A Method for Storing ESP Forecasts In an INFORMIX Table

David G. Brandon Hydrologist In Charge Colorado Basin River Forecast Center

Jun 26, 2001

A Method for Storing ESP Forecasts In an INFORMIX Table

Preface

This paper presents a method to store ESP forecasts into a RDBMS. It is offered to present a few concrete ideas and 'a solution' to 'a problem'. Hopefully, discussion will follow and additional ideas will surface that can better help define, refine and solve this problem.

1.0 Introduction

Ensemble Streamflow Prediction (ESP) is the foundation and linchpin of the AHPS. As AHPS projects expand in the NWS, the use of ESP increases at the RFCs and WFOs. It is evident that a procedure would be useful that allows a user to organize and retain the essential elements of ESP forecasts.

It would be desirable to utilize an existing NWS approved data/forecast exchange format, for example SHEF. A natural place for storing forecasts would seem to be the relational DBMS, INFORMIX.

The CBRFC has developed a method that allows ESP forecasts to be stored in an INFORMIX Table. The INFORMIX table structure accepts all of the unique attributes of an ESP forecast. The SHEF PEDTSEP was used to identify many of the attributes of the ESP forecast. Software has been developed that converts ESPADP output into an interim format. This format is passed to a parser/poster which stores the ESP forecasts into the INFORMIX table.

2.0 ESP Forecast Review

An ESP forecast is a strange 'animal'. Unlike a deterministic forecast, which is a single value, an ESP forecast consists of many values based upon a user-selected probability distribution. They can take the form of sums, means, instantaneous values, number of days and an extremum for any time window. They can result from several model types. They can be based on five probability distributions, at least 5 trace weighting schemes, different carryover groups, and different starting dates within the carryover group. Forecasts are also derived from time series that are of a certain 'data type' and 'time step'. Finally, the historical data that are analyzed have a specific beginning and ending date.

ESP forecasts can be classified into two categories. One category describes an ESP forecast single element that results from andanalysis window'. An example would be the instantaneous maximum flow that occurs during the next 3 months. The second category describes a time series of values for the 'analysis window'. An example of this would be the mean daily flow for each day for the next two weeks. Procedures have been developed to handle both of these categories.

The following is a list of the unique attributes of an ESP forecast. A detailed description of each attribute follows.

Basin/Segment ID Type of Forecast Model Data Value Probability of the Data Value Date/Time of Analysis Window Date of Creation Probability Distribution Weighting Scheme Date/Time of Carryover Carryover Group ID Data Type of the Time Series Time Step of the Time Series Beginning Historical Year Ending Historical Year

The following are additional information that 'may' be needed for certain cases.

Date/Time of Extremum in the Analysis Window

(for certain forecast types)

ND_Value

(If forecast type is NDTO(1), NDTO(2), NDIS(1), or NDIS(2)) Units of ND_Value

(If forecast type is NDTO(1), NDTO(2), NDIS(1), or NDIS(2))

Basin/Segment ID:

An eight character identifier which uniquely defines the NWSRFS segment.

Forecast Types:

MXND	Maximum Mean Daily & Days to Max
MNMD	Minimum Mean Daily & Days to Min
MD	Mean Daily
SUM	Cumulative Sum (Volume)
MXIN	Maximum Instantaneous & Days to Max
MNIN	Minimum Instantaneous & Days to Min
NDTO(1)	Number of Days to Get Above a Value
NDTO(2)	Number of Days to Get Below a Value
NDIS(1)	Number of Days Greater than a Value
NDIS(2)	Number of Days Less Than a Value

Model Sources:

Historical Observed Historical Simulated Conditional Simulated

Extremum:

A notation of whether the value is a maximum or minimum.

Date/Time of Analysis Window:

A description of the 'window' or time period, which the ESP forecast type is being analyzed. This may be described as a starting date/time with a duration, and ending date/time with a duration, or a beginning and ending date/time of the 'window'.

Date/Time of Creation:

The date and time the ESP forecast was created.

Probability distributions:

Empirical Normal Log Normal Wakeby Weibull

Weighting Schemes:

Equal (Climatology) CPC Pre Adjustment Technique CPC Post Adjustment Technique Alaska Technique Your Customize Technique(s)

Carryover Date/Time:

The date and time of the NWSRFS carryover group used when running the ESP program.

Carryover_Group ID:

An alphanumeric field representing the carryover group used in the forecast.

Data Type of the Time Series:

The NWSRFS data type used when the ESP run was made.

Time Step of the Time Series:

The time step of the NWSRFS data type used when the ESP run was made.

Beginning Historical Year:

The beginning year of the historical data that are being analyzed when the ESP run was made.

Ending Historical Year:

The ending year of the historical data that are being analyzed when the ESP run was made.

Date/Time of Extremum:

A date and time of the extremum predicted in the analysis window if the value is an extremum.

ND_Value:

The value specified if the forecast type is NDTO(1), NDTO(2), NDIS(1), or NDIS(2).

Units of ND_Value:

The units of the nd_value: FT = feet CFS = flow

Data Value:

The value(s) of the forecast associated with the probability.

3.0 Translation

The current rules of SHEF do not allow the capability to describe all of the unique attributes of an ESP forecast. Some of the attributes can match to the current PEDTSEP definitions. Other attributes cannot. A solution was needed to address this dilemma.

An initial approach used a new concept that utilized the 'retained comment' field that is part of SHEF. Special codes or tokens and associated values were coded in the retained comment field according to defined rules. This 'retained comment' field could be passed and decoded by a poster that is designed to post to the target ESP forecast table. After several attempts it became apparent that this approach produced SHEF messages where many of the attributes were contained in the retained comment field. Furthermore, it was very cumbersome to produce time series of values representing differing probability values.

A solution was developed that utilizes a CSV, or comma separated value format to encode and transmit the attributes and values of the esp forecasts. This format incorporates the SHEF PEDTSEP code to describe some of the attributes once they are posted to the database table.

3.1 SHEF TRANSLATION FOR SOME OF THE ATTRIBUTES

SHEF Physical Element: PEDTSEP

- **QC** Runoff Volume
- QR Discharge, River

SHEF Duration: PEDTSEP

V Variable

SHEF Type/Source: PEDTSEP

- PE Process #5 (Historical Simulated)
- **HE** Historical with #5 (new code) (Historical Observed)
- FU Forecast Unadjusted Model 1 (Conditional Simulated)

SHEF Extremum: PEDTSEP

- K Minimum of Year calendar (assumed period)
- **U** Maximum of Year Calendar (assumed period)
- Z Default

SHEF Probability: PEDTSEP

- A .002
- B .004
- C .01
- D.02
- E .04
- F .05
- 1.1
- 2.2
- G .25
- 3.3
- 4.4
- 5.5
- 6.6
- 7.7
- Н.75
- 8.8
- 9.9
- Т.95
- U .96
- V .98
- W .99
- X .996
- Y .998

3.2 Translation For The Remaining Attributes

All attributes cannot be described using the SHEF PEDTSEP. However, these attributes are unique to an ESP forecast and need to be provided. The method allows a code to be entered to describe most attributes. Some require a date-time, others an explicit number or string. A description is shown below.

CODE	DESCRIPTION
E	Empirical (Default)
Ν	Normal
L	Log Normal
W	Wakeby
В	Weibull

Probability Distributions

Weighting Schemes

CODE	DESCRIPTION
EQU	Equal/No Weights (Default)
CPR	CPC Pre Adjustment Technique
СРР	CPC Post Adjustment Technique
ALK	Alaska Technique
YW1	Year Weighting Scheme 1
YW2	Year Weighting Scheme 2
YW3	Year Weighting Scheme 3

Carryover Group	
CODE	DESCRIPTION

	DESCRIPTION
#	#=alphanumeric string

Date/Time of Extremum	
CODE	DESCRIPTION
CCYR-MM-DY HR:MN	(INFORMIX Date Time String)

Date/Time	of Carryover
-----------	--------------

CODE	DESCRIPTION
CCYR-MM-DY HR:MN	(INFORMIX Date Time String)

Data Type of the Time Series	
CODE	DESCRIPTION
S	SQME
Q	QINE
N	QIN

Time Step of the Time Series	
DESCRIPTION	
Daily	
Hourly	
6 Hourly	

Beginning \	Year of Historical Data
CODE	DESCRIPTION
#	# = Year

Ending Ye	ar of Historical Data
CODE	DESCRIPTION
#	# = Year

Value Used in	
NDTO(1), NDTO(2),	NDIS(1), or NDIS(2)
CODE	DESCRIPTION
#	# = value

Units of the Value Used in		
NDTO(1), NDTO(2),	NDIS(1), or NDIS(2	
CODE	DESCRIPTION	
С	CFS	
F	FEET	

(3.3) Standard PEDTSEP SHEF Constructs

TYPE PROB	HISTORICAL	HISTORICAL	CONDITIONAL
	OBSERVED	SIMULATED	SIMULATED

Flow	Volume	Over	а	Variable	Period
SUM					

	QCVHEZZ	QCVPEZZ	QCVFUZZ
Maximum M MXMD	ean Daily During a P	eriod (Including time	e of Max)
	QCVHEUZ	QCVPEUZ	QCVFUUZ
Minimum Me MNMD	ean Daily During a Pe	eriod (Including time	e of Min)
	QCVHEKZ	QCVPEKZ	QCVFUKZ
Maximum In MXIN	stantaneous Flow D	uring a Period (Inclu	iding time of Max)
	QRVHEUZ	QRVPEUZ	QRVFUUZ
Minimum Instantaneous Flow During a Period (Including time of Min) MNIN			
	QRVHEKZ	QRVPEKZ	QRVFUKZ
Mean Daily I MD	Discharge		
	QRVHEZZ	QRVPEZZ	QRVFUZZ
Number of Days to Get Above a Value (including value) NDTO(1)			
	NDVHEZZ	NDVPEZZ	NDVFUZZ
Number of D NDTO(2)	ays to Get Below a '	Value (including val	ue)

NEVHEZZ NEVPEZZ NEVFUZZ

Number of Days Greater than a Value (including value) NDIS(1)

NFVHEZZ NFVPEZZ NFVFUZZ

Number of Days Less Than a Value (including value) NDIS(2)

NGVHEZZ	NGVPEZZ	NGVFUZZ
---------	---------	---------

Time Series Discharge

6 Hrly QRQHEZZ Note 3	QRQPEZZ	QRQFUZZ
Daily QRDHEZZ	QRDPEZZ	QRDFUZZ

^{Note 3} The probability in the 7th location of the PEDTSEP needs to be specified for time series information.

4.0 CSV Format

The ESP forecast needs to be converted into its component pieces and placed in a 'CSV' (comma separated value) format. A piece of software has been developed that accepts ESPAPD output and produces the required 'csv' format. The values in the CSV format need to adhere to a metadata format and in the correct position. The software handles this automatically.

There are two metadata formats, one for each category of ESP forecast as described in the section, "ESP Forecast Review". Each value must be separated by a ','.

Category: Single Element in an Analysis Window

This format describes various probabilities for a single forecast element. Location/Station ID PEDTSEP Type of units for analysis window number of units for analysis window creation date time beginning date time or window carryover date time carryover group probability distribution weighting scheme historical data type historical time step beginning year of historical data ending year of historical data ending date time or window time of extremum

```
value for number of days (to/is)
units for value of number of days
quality code
value at probability p 002
value at probability p 004
value at probability p 010
value at probability p 020
value at probability p 040
value at probability p 050
value at probability p 100
value at probability p 200
value at probability p 250
value at probability p 300
value at probability p_400
value at probability p 500
value at probability p 600
value at probability p 700
value at probability p 750
value at probability p 800
value at probability p 900
value at probability p 950
value at probability p 960
value at probability p 980
value at probability p 990
value at probability p 996
value at probability p 998
```

Category: Time Series in an Analysis Window

This format describes a time series of values for a given probability. The probability is described in the PEDTSEP.

Location/Station ID PEDTSEP creation date time beginning date time or window carryover date time carryover group probability distribution weighting scheme historical data type historical time step beginning year of historical data ending year of historical data ending date time or window quality code value at offset 1 value at offset 2 value at offset 3 value at offset 4 value at offset 5 value at offset 6 value at offset 7 value at offset 8 value at offset 9 value at offset 10 value at offset 11

value	at	offset	12
value	at	offset	13
value	at	offset	14
value	at	offset	15
value	at	offset	16
value	at	offset	17
value	at	offset	18
value	at	offset	19
value	at	offset	20
value	at	offset	21
value	at	offset	22
value	at	offset	23
value	at	offset	24
value	at	offset	25
value	at	offset	26
value	at	offset	27
value	at	offset	28

5.0 Examples

-

4.1 MXND Maximum Mean Daily & Date/Time of Max

Attributes	Values for Example
Basin/Segment ID	TEST1BAS
Date/Time of Creation	August 21, 2001 1200
Date/Time of Period	August 28, 2001 1200
Forecast Type	MXND Max Mean Daily
Date/Time of Analysis Window	August 21 - 28 (One Week)
Model Source	Historical Simulated
Extremum	Maximum
Probability Distribution	Normal
Weighting Scheme	Alaska
Date/Time of Carryover	August 06, 2001 1200
Carryover Group ID	ABCDEFG
Data Type of the Time Series	QINE
Time Step of the Time Series	Daily
Beginning Historical Year	1971
Ending Historical Year	1989
Date/Time of Extremum	August 27, 0600 06:00

Value	None
Units of Value	None
Quality Code	None

```
TESTBAS1,QCVPEUZ,W,1,2001-08-21 12:00, 2001-08-21 12:00, 2001-06-21 12:00,ABCDEFG,N,ALK,QINE,D,1971,1989, 2001-08-28 12:00, 2001-08-27 06:00, , , , ,9980,9960,9900,9800,9600,9500,9000,8000,7500,7000,6000,500 0,4000,3000,2500,2000,1000,1050, 1040,1020,1010,40,20
```

(5) Operational Considerations

The flow of ESP data into the INFORMIX database is described below.

All actions can be set up to execute automatically.

(Step 1)

ESP and/or ESPADP is executed in batch mode (or by the forecaster.) A text output file is created using the probability levels, distribution type, and other user choices. Up to 23 probability levels can be used to describe each forecast type/element in a distribution.

(Step 2)

The text output file from step one is parsed and converted to SHEF/Expanded SHEF. A prototype of this program exists.

NOTE: A better way would be to incorporate a nationally supported option in ESP and ESPADP that would allow the user to output forecasts in SHEF/Enhanced SHEF format.

(Step 3)

The SHEF encoded ESP forecast are copied to a directory or queue. A SHEF/ESP decoder/poster picks it up and parses and posts the data. (A prototype version of the SHEF parser/poster exists.)

(6) **INFORMIX** Table Structure

A sample table schema is shown below. The prime key is marked with an asterick.

Single Element

char	id8[8]	*
char	pc[7]	*
char	type_units[1]	*
int	num_units	*
datetime	year to minute c_dtime	*
datetime	year to minute v1_dtime	*
datetime	year to minute carryo_dtime	*
char	carryo_group[8]	*
char	p_distribution[1]	*
char	weighting[3]	*
char	his_data_type[4]	*
int	his_time_step	*
int	his_beg_year	*
int	his_end_year	*
datetime	year to minute v2_dtime	
datetime	year to minute ext_dtime	
double	nd_value	
char	nd_units[1]	
char	qcode[1]	
double	p_002	
double	p_004	
double	p_010	
double	p_020	
double	p_040	
double	p_050	
double	p_100	
double	p_200	
double	p_250	
double	p_300	
double	p_400	
double	p_500	
double	p_600	
double	p_700	
double	p_750	
double	p_800	
double	p 900	

double	p_950
double	p_960
double	p_980
double	p_990
double	p_996
double	p_998

Time Series

char	id8[8]	*
char	pc[7]	*
datetime	year to minute c_dtime	*
datetime	year to minute v1_dtime	*
datetime	year to minute carryo_dtime	*
char	carryo_group[8]	*
char	p_distribution[1]	*
char	weighting[3]	*
char	his_data_type[4]	*
int	his_time_step	*
int	his_beg_year	*
int	his_end_year	*
datetime	year to minute v2_dtime	*
char	qcode[1]	
double	o_1	
double	o_2	
double	o_3	
double	o_4	
double	o_5	
double	o_6	
double	o_7	
double	o_8	
double	o_9	
double	o_10	
double	o_11	
double	o_12	
double	o_13	
double	o_14	
double	o_15	
double	o_16	
double	o_17	
double	o_18	
double	o_19	
double	o_20	
double	o_21	
double	o_22	
double	o_23	
double	o_24	
double	o_25	
double	o_26	
double	o_27	
double	o_28	