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ABSTRACT

To test the accuracy of statistically downscaled precipitation estimates from numerical weather prediction
models, a set of experiments to study what space and time scales are appropriate to obtain downscaled precipitation
forecasts with maximum skill have been carried out. Fourteen-day forecasts from the 1998 version of the National
Centers for Environmental Prediction (NCEP) Medium-Range Forecast (MRF) model were used in this study.
It has been previously found that downscaled temperature fields have significant skill even up to 5 days of
forecast lead time, but there is practically no valuable skill in the downscaled precipitation forecasts. Low skill
in precipitation forecasts revolves around two main issues. First, the (intermittent) precipitation variability on
daily and subdaily time scales could be too noisy to derive meaningful relationships with atmospheric predictors.
Second, the model parameterizations and the coarse spatial resolution of the current generation of global-scale
forecast models might be unable to resolve the local-scale variability in precipitation. Both of these issues may
be addressed by spatial and temporal averaging.

In this paper the authors present a diagnostic study using a set of numerical experiments to understand how
spatial and temporal aggregations affect the skill of downscaled precipitation forecasts in the upper Colorado
River basin. The question addressed is, if the same set of predictor variables from numerical weather prediction
models is used, what space (e.g., station versus regional average) and time (e.g., subdaily versus daily) scales
optimize regression-based downscaling models so as to maximize forecast skill for precipitation? Results in
general show that spatial and temporal averaging increased the skill of downscaled precipitation estimates. At
subdaily (6 hourly) and daily time scales, the skill of downscaled estimates at spatial scales greater than 50 km
was generally higher than the skill of downscaled estimates at individual stations. For the 6-hourly time scale
both for stations and for mean areal precipitation estimates the maximum forecast skill was found to be ap-
proximately half that of the daily time scale. At forecast lead times of 5 days, when there is very little skill at
daily and subdaily time scales, useful skill emerged when station data are aggregated to 3- and 5-day averages.

1. Introduction

Numerical weather prediction (NWP) models are
among the most important tools used by operational
agencies to make accurate and meaningful quantitative
precipitation forecasts (QPFs; Antolik 2000). Medium-

Corresponding author address: Subhrendu Gangopadhyay,
CSTPR/CIRES, University of Colorado, Campus Box 488, Boulder,
CO 80309-0488.
E-mail: subhrendu.gangopadhyay@colorado.edu

range forecasts from the current generation of global-
scale NWP models are laden with biases and have poor
skill in many regions (e.g., Clark and Hay 2004). Model
output statistics (MOS) guidance is thus necessary to
postprocess NWP output to produce reliable operational
QPFs (Antolik 2000). Several approaches have been
used for MOS (e.g., Glahn and Lowry 1972) and range
from simple bias corrections to developing complex
models based on parametric and nonparametric statis-
tical methods. These methods have also been used by
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the global change community to estimate the climate
impacts associated with enhanced atmospheric concen-
trations of greenhouse gasses and are referred to as sta-
tistical downscaling (SDS).

MOS and SDS methods can be broadly classified into
three categories: 1) transfer functions, 2) weather gen-
erators, and 3) weather typing. A common transfer func-
tion downscaling approach is multiple linear regression
(MLR), where grid-cell values from atmospheric models
are used as predictors for surface variables such as local
precipitation and temperature (e.g., Clark and Hay
2004). Regression models can also be developed using
principal components of the predictor fields (Hewitson
and Crane 1992), through canonical correlation analysis
(CCA) and singular-value decomposition (SVD) anal-
ysis (von Storch and Zwiers 1999). In addition to linear
regression, nonlinear models such as the ones based on
nonlinear interpolation (Brandsma and Buishand 1997),
geostatistics (Biau et al. 1999), and artificial neural net-
works (Hewitson and Crane 1996), have also been de-
veloped. Weather generators on the other hand are sto-
chastic models of climate variability (Wilks 1999).
Weather generators are typically developed for daily
time scales (e.g., Rajagopalan and Lall 1999; Buishand
and Brandsma 2001; Yates et al. 2003), but subdaily
models are also available (Katz and Parlange 1995). The
weather generators can also be conditioned upon large-
scale atmospheric states to translate output from global-
scale models into useful information at local scales (e.g.,
Katz and Parlange 1996; Wilby 1998). The third meth-
odological group, weather typing, is a synoptic down-
scaling approach where weather classes are related to
local and regional climate variations. The weather clas-
ses can be defined synoptically or derived specifically
for downscaling purposes, for example, by constructing
indices of airflow (Conway et al. 1996). Another weath-
er typing approach is based on the nonparametric clas-
sification and regression trees (CART; Breimann et al.
1984) analysis. CART is a complex classification
scheme based simultaneously on large-scale and local
climate variables and has been applied primarily to sim-
ulate local daily rainfall (Schnur and Lettenmaier 1998).
Nonparametric SDS approaches based on analogues
have also been developed to estimate local precipitation
(Zorita and von Storch 1999; Gangopadhyay et al.
2002).

Though there are several methods to perform SDS,
all methods strive to extract the signal from global-scale
models that is useful to describe variability in surface
climate at local scales. For precipitation, the noisy char-
acter of precipitation fields often masks the signal in
global-scale models. It is possible to reduce the noise
in precipitation fields through both temporal aggregation
and spatial averaging. This may help maximize the skill
that is extracted from global-scale forecast models and
increase the skill in downscaled precipitation estimates.
The question we address is, if we use the same set of
predictor variables, what space (e.g., station versus re-

gional average) and time (e.g., subdaily versus daily)
scales optimize downscaling models so as to maximize
forecast skill for precipitation?

The paper next describes the datasets and downscal-
ing experiments (section 2). Section 3 presents the
downscaling methodology and the skill measure used
to compare the downscaling experiments. Results and
discussions on the space–time aggregation experiments
are presented in section 4. A summary of the research
and conclusions ends the presentation (section 5).

2. Datasets and downscaling methodology

We use reanalysis datasets from the National Centers
for Environmental Prediction (NCEP) 1998 Medium-
Range Forecast (MRF) model in this study. This section
briefly describes the data archives from the NCEP 1998
MRF model available from the National Oceanic and
Atmospheric Administration (NOAA) Climate Diag-
nostic Center (CDC), the predictor variables used in this
study, precipitation datasets for stations and mean areal
precipitation (MAP) fields in the upper Colorado River
basin from the Colorado Basin River Forecast Center
(CBRFC), and the downscaling experiments.

a. The CDC forecast archive

The NOAA CDC has generated a ‘‘reforecast’’ dataset
(1979–present) using a fixed version (circa 1998) of the
NCEP operational MRF model (Hamill et al. 2004).
Output variables used in this study are (a) the accu-
mulated precipitation for a 12-h period (e.g., 0000 UTC–
1200 UTC), (b) 2-m air temperature, (c) relative hu-
midity at 700 hPa, (d) 10-m zonal wind speed, (e) 10-
m meridional wind speed, (f ) total column precipitable
water, and (g) mean sea level pressure. These 7 variables
were selected from a potential list of over 300 model
variables, and were shown by Clark and Hay (2004) to
be particularly useful for downscaling precipitation.

b. Precipitation datasets and downscaling
experiments

Hydrologic models run by the River Forecast Centers
(RFCs) in the United States are based upon National
Weather Service River Forecasting System (NWSRFS)
guidelines and use precipitation and temperature data
that are interpolated to basin subareas. River basins are
divided into subbasins, and are further subdivided typ-
ically into three catchment areas based on elevation
bands. Six-hourly MAP and mean areal temperature
(MAT) fields are estimated for each of the catchment
areas following preprocessing and calibration guidelines
outlined by the NWS (Anderson 2004; Larson 2004).
The distribution of stations and MAP areas in the upper
Colorado basin is shown in Fig. 1. There are 10 hourly
stations, 60 daily stations, and 64 subbasins in the study
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FIG. 1. Location of the upper Colorado River basin and a map (not to scale) showing subbasins
(MAP areas), daily stations (diamonds), and hourly stations (circles).

TABLE 1. Datasets used in downscaling experiments.

Notation Description

hlypdly
dlypdly
mappdly
hlyp6hy
mapp6hy

Daily data derived at the hourly stations from raw hourly station data.
Raw daily data at the daily stations.
Daily data derived for the MAP regions from calibrated 6-hourly MAP data.
6-hourly data derived at the hourly stations from raw hourly station data.
Calibrated 6-hourly MAP data for the MAP regions.

dlyp3da
dlyp5da
mapp3da
mapp5da

Daily data at the daily stations derived using a 3-day moving average of dlypdly.
Daily data at the daily stations derived using 5-day moving average of dlypdly.
Daily data at the MAP regions derived using a 3-day moving average of mappdly.
Daily data at the MAP regions derived using a 5-day moving average of mappdly.

area. The hourly and daily stations were selected on the
basis that at least 90% of data were available for the
period 1979–98. The estimated MAP fields for each of
the 64 subbasins are calibrated using 6-hourly mean
station precipitation values (see, Anderson 2004; Larson
2004).

From the raw station datasets (hourly data at hourly

stations and daily data at daily stations, dlypdly) and
MAPs (6-hourly values, mapp6hy), several datasets were
derived for the downscaling experiments (Table 1).
These derived datasets are 1) 6-hourly precipitation val-
ues at the hourly stations each averaged over the four
6-hourly periods, 0000–0600, 0600–1200, 1200–1800,
and 1800–2400 UTC (hlyp6hy); 2) daily precipitation
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estimates at the hourly stations (hlypdly); 3) daily pre-
cipitation values at each of the 64 subbasins (mappdly);
4) 3-day moving average at the daily stations (dlyp3da);
5) 5-day moving average at the daily stations (dlyp5da);
6) 3-day moving average at the MAPs; and 7) 5-day
moving average at the MAPs. These precipitation da-
tasets were used to test the effect of spatial and temporal
aggregation on the accuracy of downscaled precipitation
estimates.

To assess the effect of spatial aggregation on the skill
of downscaled precipitation forecasts we consider two
time scales: daily and 6 hourly. We downscale and gen-
erate 14-day forecasts for the three daily cases—hlypdly,
dlypdly, and mappdly—as well as for the two 6-hourly
cases—hlyp6hy and mapp6hy. The datasets and acro-
nyms are summarized in Table 1. We also analyzed the
sensitivity of downscaled precipitation estimates to spa-
tial averaging of daily station data up to a radius of 150
km. This experiment was restricted to the daily time
scale, as there was not sufficient data to carry out this
experiment at the subdaily time scale.

To study the effect of temporal aggregation, we con-
sidered two spatial scales—point scale and regional
scale. The point scale consists of hourly and daily sta-
tions where downscaling is compared for the cases
hlyp6hy, hlypdly, and dlypdly. The regional scale in-
cludes mapp6hy and mappdly. Also, to look into the
effects of temporal aggregation at longer forecast lead
times, we downscale to the four cases dlyp3da, dlyp5da,
mapp3da, and mapp5da, where the suffixes 3da and 5da
represent 3- and 5-day averages, respectively (see Table
1).

3. Statistical downscaling methodology and model
evaluation

a. Statistical downscaling methodology

We developed our statistical downscaling models
based on multiple linear regressions (von Storch and
Zwiers 1999). Predictors (see section 2a) from the
NCEP MRF model archive for the period 1979–2001
were used to develop regression equations and to fore-
cast precipitation at individual sites (stations or MAP
regions). A separate equation was developed for each

space (hourly stations, daily stations, and mean areal
averages) and time (6-hourly, daily, 3- and 5-day av-
erages) case, and for each forecast lead time by month.
Forecasts were generated for a lead time of up to 14
days, and all forecasts were initialized at 0000 UTC on
that day. For a given day, we use forecasts from three
adjacent 12-h periods, 0000–1200 UTC from day10 (5
P.M.–5 A.M. local time in Colorado), forecasts from
1200–0000 UTC on day10 (5 A.M.–5 P.M. local time
in Colorado), and forecasts from 0000–1200 UTC on
day11 (5 P.M.–5 A.M. local time in Colorado). This
provides a total of 21 potential predictor variables in
the regression equations for the subdaily and daily time
scales, and helps account for possible temporal phase
errors in the model output. For downscaling to 3- and
5-day averages of station and mean areal precipitation
values, a set of seven predictor variables were derived
using a 3- and 5-day moving window respectively on
the original predictor set.

The intermittent and skewed character of the daily
and subdaily precipitation data make it necessary to
preprocess these data prior to developing the regression
equations. The site time series of precipitation was first
disaggregated into a time series of occurrence (1 5 wet
days and 0 5 dry days) and precipitation amounts (only
wet days). Logistic regression was used to model pre-
cipitation occurrence, and ordinary least squares re-
gression was used to develop models for precipitation
amounts.

The time series of occurrence is used as the response
variable for the logistic regression model, and the time
series of precipitation amounts is used as the response
variable for the ordinary least squares model. For pre-
cipitation amounts, the station/MAP precipitation data
(only wet days) are transformed to a normal distribution
using a nonparametric probability transform (Panofsky
and Brier 1963). For each data point, the cumulative
probability of observed precipitation is computed. This
is matched with the cumulative probability from a stan-
dard normal distribution (mean of zero and standard
deviation of one), and the normal deviate corresponding
to the cumulative probability in the standard normal
distribution is used to replace the original precipitation
value.

The regression models have the form

y 5 a 1 a x 1 a x 1 · · · 1 a x 1 · · · 1 a x 1 «, (1)0 1 1 2 2 k k n n

1
p 5 1 2 , (2)

1 1 exp(b 1 b x 1 b x 1 · · · 1 b x 1 · · · 1 b x )0 1 1 2 2 k k n n

where, Eq. (1) is for ordinary least squares regression
and Eq. (2) is for logistic regression. In these equations,
y is the response variable in the ordinary least squares
model (precipitation amount at a station/MAP), p is the
response variable in the logistic regression model (e.g.,

the probability of precipitation at a station location),
and n is the total number of predictors. In these equa-
tions, a0 and b0 are the regression constants: ak and bk

are the slope coefficients for the kth explanatory variable
(xk, k 5 1, . . . , n), and « is the error term. The ex-



1196 VOLUME 5J O U R N A L O F H Y D R O M E T E O R O L O G Y

planatory variables (xk, x2, . . . , xn) are forecasted out-
puts from the NCEP MRF model (e.g., 700-hPa relative
humidity, mean sea level pressure). The solution of or-
dinary least squares equation was done using the SVD
algorithm (Press et al. 1992), and the logistic regression
equation was solved iteratively using the method (and
code) presented by Agterberg (1989). The forward se-
lection approach was used to identify the variables used
in the regression equations (Antolik 2000; Clark et al.
2004).

Once a regression model has been developed, a value
of y can then be predicted from the regression equations
( ŷ) for each data point in the time series [Eq. (1)]. The
residuals (« 5 y 2 ŷ) were then tested for independence,
normality, and constant variance. We used the turning
point test (Clarke 1984), and the skewness test of nor-
mality (Snedecor and Cochran 1989) respectively to test
the assumptions that the residuals are independent and
normally distributed. Since the regression models were
developed in normal space it was expected that the re-
siduals will follow a normal distribution, and we found
that the hypothesis of normality was accepted in all
cases at the 5% significance level. The residuals also
passed the test of independence at the 5% significance
level. To test whether the residuals have a constant var-
iance we used a graphical diagnosis. Residuals were
plotted against the model predictions, and examined if
the variability between the residuals remained relatively
constant across the range of the predicted values. We
observed a similar degree of variability around the mean
for the residuals across the range of predicted precipi-
tation amounts (not shown). This gives confidence that
the residuals indeed come from a population with con-
stant variance. Generally, nonnormality and nonconstant
variance are a related problem, and from all the tests
and graphical diagnosis we can conclude that the resid-
uals are independent and come from a normal distri-
bution with a constant variance.

The next step was to generate ensembles. To account
for the intermittent properties of precipitation, precip-
itation is modeled in a two-stage process. Logistic re-
gression is used to estimate precipitation occurrence
[Eq. (2)], and ordinary least squares regression [Eq. (1)]
is used to estimate precipitation amounts. Precipitation
was modeled (in normal space) as follows:

0, when p̂ , u
y 5 (3)iens 5ŷ 1 Ns , when p̂ $ u.e

In Eq. (3), u ; U(0, 1) is a random number from a
uniform distribution ranging from 0 to 1, and p̂ is the
probability of precipitation occurrence predicted from
the logistic regression model [Eq. (2)]. If p̂ , u, then
we assume there is no precipitation. If p̂ $ u, precipi-
tation is set to occur and the precipitation amount is

computed using Eqs. (1) and (3). When p̂ $ u, the
forecasted normal deviates from Eq. (3) ( yiens) are then
transformed back to the original skewed distribution of
observed precipitation using the nonparametric proba-
bility transform technique described above. The sto-
chastic modeling of the regression residuals inflates the
variance of precipitation-reducing problems of variance
underestimation that are typical of regression-based
models. One hundred ensembles were generated using
this approach.

b. Model evaluation

Model evaluation and all comparisons are carried out
using the probabilistic skill measure, ranked probability
skill score (RPSS). RPSS is a measure of categorical
forecast skill and is computed as follows (Wilks 1995).
The RPSS is based on the ranked probability score
(RPS) computed for each forecast–observation pair:

J

2RPS 5 (Y 2 O ) , (4)O m m
m51

where Ym is the cumulative probability of the forecast for
category m, and Om is the cumulative probability of the
observation for category m. This is implemented as fol-
lows: First, the observed time series is used to distinguish
10 possible categories (J) for forecasts of precipitation
(i.e., the minimum value to the 10th percentile, the 10th
percentile to the 20th percentile . . . the 90th percentile
to the maximum value). These categories are determined
separately for each month, forecast lead time, and station.
Next, for each forecast–observation pair, the number of
ensemble members forecast in each category is deter-
mined (out of 100 ensemble members), and their cu-
mulative probabilities are computed. Similarly, the ap-
propriate category for the observation is identified and
the observation’s cumulative probabilities are computed
(i.e., all categories below the observation’s position are
assigned ‘‘0,’’ and all categories equal to and above the
observation’s position are assigned ‘‘1’’). Now, the RPS
is computed as the squared difference between the ob-
served and forecast cumulative probabilities, and the
squared differences are summed over all categories [Eq.
(4)]. The RPSS is then computed as

RPS
RPSS 5 1 2 , (5)

RPSclim

where is the mean ranked probability score for allRPS
forecast–observation pairs, and clim is the meanRPS
ranked probability score for climatological forecasts
[i.e., where there is an equal probability in each of the
m categories; Eq. (4)].

RPSS is calculated for each of the downscaling ex-
periments described in Table 1, and the different cases
are compared through plots of cumulative distribution
functions (CDF). The RPSS value indicate the fraction
of times (or equivalently as a percentage) we can gen-
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FIG. 2. Cumulative probability distribution of RPSS for hlypdly (points and lines), dlypdly (black line), and mappdly (gray line) for Jan,
Apr, Jul, and Oct at forecast lead times of 1, 3, and 5 days.

erate forecasts better than the climatology. A negative
RPSS value implies that we perform worse than cli-
matology. Another point to note is the number of en-
semble members used in calculating the RPSS. Here we
used 100 ensemble members, as presently we do not
have the computing capabilities to use a large number
of ensembles. However, we did test (not shown) the
sensitivity of the forecast skill to sets of 30, 40, 50, . . . ,
100 realizations to identify the asymptotic behavior and
successive improvements in skill. We found that the

differences in RPSS between different combinations of
30 ensembles were quite large, but this difference was
small for different combinations of 100 ensembles.

4. Results and discussions

a. Spatial aggregation

To analyze the effect of spatial aggregation, we fix
the time scales to daily and 6 hourly (subdaily). We
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FIG. 3. Distribution of median basin RPSS by month (horizontal axis) for forecast lead times of 1 through 14 days
(vertical axis) in the three daily cases: (a) hlypdly, (b) dlypdly, and (c) mappdly.
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FIG. 4. Sensitivity of RPSS to averaging distance and number of stations (shown above bottom axis) for reference point 1 (refer to Fig.
1) for (left) Jan and (right) Jul for forecast lead times of 1, 3, and 5 days. Box plots are plotted when number of stations averaged are $20,
otherwise stations are represented with single points. Triangles show the RPSS for reference point 1 for each of the averaging cases.

then compute RPSS at spatial scales of stations and for
mean areal precipitation regions and compare the val-
ues for these two time scales. The sensitivity of RPSS
to spatial averaging of precipitation stations is also
analyzed.

1) DAILY TIME SCALE

Figure 2 shows the comparison of RPSS for the three
cases—hlypdly (points and lines), dlypdly (thick black
line), and mappdly (gray line)—in each plot (see Table
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FIG. 5. Same as Fig. 4, but for reference point 2 (refer to Fig. 1).

1 for the definition of acronyms). Results are plotted
for the months of January, April, July, and October for
forecast lead times of 1, 3, and 5 days. The results show
that, in general, skill is greater for the hlypdly case over
the dlypdly and mappdly cases. There is no apparent
reason as to why the skill at the daily time scale for the

hourly stations should be greater. Because of limited
number of hourly stations (only 10) in this case, this is
likely a sampling bias. However, higher skill for hlypdly
may also be due to better measurements of precipitation
at the hourly stations. The skill of daily station data and
daily MAPs is similar. At short forecast lead times (1
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FIG. 6. Same as Fig. 2, but for hlyp6hy (points and line), hlypdly (black line), and dlypdly (gray line).

and 3 days), the RPSS CDFs are more strongly separated
than at longer forecast lead times (5 days). This is ex-
pected, as there is very little skill at 5 days, whatever
dataset is used.

An initially surprising result from Fig. 2 is the close
agreement between the station (dlypdly) and MAP
(mappdly) CDFs. A priori, one may expect the MAPs to
have higher skill because of the noise reduction associ-
ated with spatial averaging. However, this small differ-
ence between stations and the basin subareas is related
to the method used to construct mean areal precipitation
values. MAP for the basin subareas is constructed as a

weighted average of the surrounding stations. In contrast
to other interpolation methods (e.g., where the weights
are based on inverse distance), the weights for each sta-
tion are determined in the hydrologic model calibration
process. That is, various station weights are tried, and
optimal station weights are identified when the difference
between observed and modeled runoff is minimized. In
this method it is common that only one or two of the
surrounding stations have very high weights, and the
other surrounding stations have very low weights. Thus,
the MAP estimates can, in some cases, simply be con-
sidered as single-station estimates.
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FIG. 7. Cumulative probability distribution of RPSS at 5-day forecast lead time for dlypdly, dlyp3da, and dlyp5da in
Jan, Apr, Jul, and Oct.

Figure 3 shows the distribution of forecast skill by
month for up to 14 days of forecast lead time in the
three cases, (a) hlypdly, (b) dlypdly, and (c) mappdly.
These are representative median skills for the entire ba-
sin. The median skill is calculated in each case from
the RPSS values over all stations or subareas and for a
given month and forecast lead time. Essentially, there
is no valuable skill in the downscaled forecast beyond
a lead time of 5 days. Also the skill in these three cases
is the least during the summer months and is highest
during winter. This can be interpreted as the variability

in atmospheric circulation and precipitation is more spa-
tially coherent during winter. In summer, most of the
precipitation results from convective storms, which are
much more localized.

Similar results (not shown) were also obtained for the
subdaily time scale (6 hourly). Overall, downscaled es-
timates of MAP have higher skill than downscaled es-
timates for individual stations. However, these results
should be viewed cautiously because of the small num-
ber of the hourly stations. Also, the forecast skill was
generally found to be higher for the daily time scale
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TABLE 2. Distribution of daily stations for the two reference points.

Reference point 1 (dense)
lat 5 39.758N, lon 5 106.258W, elev 5 ;8800 ft

Category (d in km)
no. of stations
(cumulative) Distance range (km)

Reference point 2 (sparse)
lat 5 39.508N, lon 5 108.008W, elev 5 ;5600 ft

Category (d in km)
no. of stations
(cumulative) Distance range (km)

1 (d , 10)
2 (10 # d , 20)
3 (20 # d , 30)
4 (30 # d , 40)
5 (40 # d , 50)

1 (1)
3 (4)
3 (7)
4 (11)

10 (21)

5.549
15.563–18.756
20.841–29.778
30.579–34.676
40.769–48.522

1 (d , 10)
2 (10 # d , 20)
3 (20 # d , 30)
4 (30 # d , 40)
5 (40 # d , 50)

2 (2)
1 (3)
6 (9)
7 (16)
9 (25)

5.979–9.714
18.019

23.218–29.635
31.941–38.256
43.679–49.964

6 (50 # d , 60)
7 (60 # d , 70)
8 (70 # d , 80)
9 (80 # d , 90)

10 (90 # d , 100)

11 (32)
8 (40)

12 (52)
4 (56)
1 (57)

50.216–58.857
61.913–69.522
70.684–79.820
80.405–88.947

92.115

6 (50 # d , 60)
7 (60 # d , 70)
8 (70 # d , 80)
9 (80 # d , 90)

10 (90 # d , 100)

7 (32)
3 (35)
3 (38)
3 (41)
3 (44)

51.672–59.953
61.424–68.334
70.941–79.483
86.457–88.567
90.043–98.294

11 (100 # d , 110)
12 (110 # d , 120)
13 (120 # d , 130)

2 (59)
0 (59)
1 (60)

102.367–108.287
—

123.430

11 (100 # d , 110)
12 (110 # d , 120)
13 (120 # d , 130)
14 (130 # d , 140)
15 (140 # d , 150)
16 (150 # d , 160)

1 (45)
2 (47)
5 (52)
4 (56)
2 (58)
2 (60)

103.612
111.563–115.312
122.455–129.138
131.404–139.348
147.316–147.569
150.375–155.053

than for the subdaily time scale. The effect of temporal
aggregation on forecast skill is examined further in sec-
tion 4b.

2) RPSS SENSITIVITY TO SPATIAL AVERAGING

To further understand the effects of spatial averaging
on the accuracy of downscaled precipitation estimates
we carried out experiments using strong, better-mea-
sured, and more spatially coherent storm events. The
approach used to identify such events is discussed in
the appendix. These experiments were carried out for
two locations within the basin marked as 1 and 2 in Fig.
1. Reference point 1 is located in a higher elevation
(;8800 ft) within a dense neighborhood of daily sta-
tions, while reference point 2 (elevation: ;5600 ft) was
selected within a sparse neighborhood of daily stations.
Neighboring stations were included with an incremental
search radius of 10 km until all 60 daily stations were
included. The details of this averaging process are given
in Table 2.

We next separately downscaled to each point, 1 and
2, for all regional averages summarized in Table 2. RPSS
from this downscaling experiment is shown in Fig. 4
(reference point 1) and Fig. 5 (reference point 2). Plots
are made for winter (January) and summer (July) up to
a forecast lead time of 5 days. RPSS for each category
(see Table 2) is plotted with the averaging distance
(search radius). The search radius was incremented pro-
gressively by 10 km until all the 60 daily stations were
covered. The number of stations averaged within a given
distance is also shown in the plots. The skill from each
of the individual stations averaged is shown as points
when the number of stations was less than 20 and as
box plots when the number of stations averaged was 20
or more. The RPSS for the 13 spatial averages for point
1 and the 16 spatial averages for point 2 are depicted

with triangles. For reference point 1, the RPSS clearly
increases as more stations are averaged (triangles in Fig.
4). This is most pronounced in July for the forecast lead
time of 1 day, but is also evident for other months and
lead times. Reference point 2 is located in a lower-
elevation region characterized by generally higher
downscaling skill (not shown). The improvement in skill
with distance is less pronounced for reference point 2
(Fig. 5), as the regional average at larger spatial scales
includes the high-elevation stations, which, by them-
selves, have lower downscaling skill. Nevertheless, the
skill for the regional average (triangles) is much higher
than the skill at most of the individual stations. Note in
particular that for the forecast lead time of 5 days when
the RPSS for most individual stations is generally less
than 0.1, the RPSS for the regional average is about
0.2. Because of limited data from hourly stations, this
exercise was carried out only with daily stations.

b. Temporal aggregation

Analogous to spatial aggregation, we first fix the
space scales to points (i.e., stations) and regions (i.e.,
mean areal precipitation estimated over basin subareas)
to analyze the effect of temporal aggregation. Then we
compare and contrast RPSS at 6-hourly and daily time
scales for these two spatial scales. Finally, we analyze
the effects of temporal averaging over 3 and 5 days at
large forecast lead times.

1) POINT SCALE

The three cases compared are hlyp6hy, hlypdly, and
dlypdly (see Table 1). Figure 6 shows the CDFs for these
three cases in January, April, July, and October at fore-
cast lead times of 1, 3, and 5 days. The skill for the 6-
hourly station data (hlyp6hy) is consistently lower than
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the skill for the daily station datasets (hlypdly and
dlypdly), demonstrating the higher skill for longer av-
eraging times. The hourly station data aggregated to the
daily time scale (hlypdly) has slightly higher skill than
the raw daily station data (dlypdly), which likely is a
sample bias. The three CDFs in summer are closer to
each other (mostly at longer lead times), reflecting lack
of skill in downscaled precipitation at this time of the
year.

Also, for the regional scale we compared the cases
mapp6hy and mappdly (not shown). Similar to the point
scale, at the regional scale, the daily time scale provides
consistently higher forecast skill.

2) RESULTS FOR LONGER FORECAST LEAD TIMES

We next analyzed the effect of temporal aggregation
at the forecast lead time of 5 days at the point scale
(Fig. 7). The results are shown for January, April, July,
and October and show that skill is much higher (i.e.,
nonzero) when data are aggregated to 3- and 5-day av-
erages. These results demonstrate that even if there is
no useful skill at the daily time scale, useful skill can
be obtained at longer averaging times. These results may
be useful to assess the probability of significant precip-
itation several days into the future. The 3- and 5-day
averages show equivalent skill. Once again in summer,
the skill is much lower, but averaging does improve the
forecast skill at longer forecast lead times. Similar re-
sults were obtained for experiments carried using the
MAP areas.

5. Summary and conclusions

In this paper we have analyzed the effect of spatial
and temporal aggregation on the skill of downscaled
precipitation estimates in the mountainous upper Col-
orado River basin. Previous research by the authors
(e.g., Clark and Hay 2004) has shown that skill in pre-
cipitation forecasts through statistical downscaling is
quite limited, and this study was undertaken to under-
stand the appropriate space–time scales that should be
used in a downscaling procedure. The downscaling
model used is based on a transfer function approach
developed using multiple linear regressions. The pre-
dictors (a total of seven variables) for the multiple linear
regression models were selected from the ‘‘reforecast’’
analysis carried out using the operational version of the
NCEP 1998 MRF model. We carry out several exper-
iments combining space scales ranging from points to
areal averages (up to 150 km) and time scales ranging
from 6-hourly to 5-day averages.

As expected, spatial and temporal averaging increased
the skill of downscaled precipitation estimates. At sub-
daily and daily time scales, the skill of downscaled es-
timates at spatial scales greater than 50 km was gen-
erally higher than the skill of downscaled estimates at
individual stations. Also, since total accumulated pre-

cipitation from the MRF model was used as one of the
predictor variables, and is itself an area average, it is
expected to be a better predictor for area-averaged pre-
cipitation than for station precipitation. Furthermore, at
forecast lead times of 5 days, when there is very little
skill at daily and subdaily time scales, useful skill
emerged when station data are aggregated to 3- and 5-
day averages. Extending these findings to the opera-
tional setting is not straightforward. For example, the
NWS operational streamflow models require 6-hourly
inputs for each of the subbasins. Further work is re-
quired to assess if downscaled estimates at larger spatial
scales and longer averaging times, when disaggregated
to 6-hourly values, produce improved streamflow fore-
casts.

Acknowledgments. This work was supported by the
NOAA GEWEX Americas Prediction Program (GAPP)
and the NOAA Regional Integrated Science and As-
sessment (RISA) Program. We thank Jeffery Whittaker
and Tom Hamill at the NOAA Climate Diagnostics Cen-
ter in Boulder Colorado for providing output from his-
torical runs of the NCEP MRF model, and Brent Bernard
from CBRFRC for his GIS support. We also thank the
three anonymous reviewers for their helpful comments.

APPENDIX

Estimation of Stronger and Spatially Coherent
Storm Events

To estimate spatially averaged precipitation at each
of the reference points, we performed a two-step pre-
processing of the daily station data for the period 1979–
2001 (8401 days) to identify the stronger and spatially
coherent storm events. First, we assessed the fraction
of time (a) when a given percentage (expressed here as
decimal percent, p) of all the stations within a given
search radius have valid (nonmissing) precipitation data
(includes both dry and wet stations). This is computed
in the following two steps: (a) we compute the fraction
of stations with valid data (p) for all the 8401 days in
the time series, and for all averaging points in Table 2,
and (b) for each averaging point, we calculate the frac-
tion of time (a) the fraction of stations with valid data
is above the thresholds p 5 1.0, 0.95, 0.90, 0.85, and
0.8. Results are shown in the two top panels of Fig. A1.
The most striking result from this exercise is the small
fraction of time when all stations have valid precipi-
tation data (i.e., p 5 1.0). This is most pronounced for
reference point 2 for larger spatial averages (e.g., .30
stations), meaning that if all stations are used there will
be insufficient data to develop reliable downscaling
models. However, for both the reference points, there
is data from at least 85% of the stations in slightly over
80% of the days in the time series. That is, a . 0.8 for
p $ 0.85 when the number of stations averaged is great-
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FIG. A1. Spatial and temporal thresholds for averaged daily station data.

er than 10. We thus restrict attention to days when 85%
of stations have valid data.

After fixing the threshold p $ 0.85, we compute the
fraction of days (b) when there is precipitation in a
certain fraction (q) of the stations averaged. This is plot-
ted in the two bottom panels of Fig. A1. We plotted
b | p $ 0.85 for four q values 1.0, 0.75, 0.50, and 0.25.
These plots can be interpreted as follows: q 5 1.0 is
the fraction of time when there is precipitation at all of
the stations averaged. When more stations are averaged
(e.g., .10), this situation is less common; q 5 0.50,
means that at least 50% of the stations with valid data
are wet, and in this case, this occurs for about 30% of
the days in the time series (;2520 days).

This analysis helps to derive a meaningful way to
spatially average daily precipitation values. For each
of the points 1 and 2, we used the thresholds of p and
q to be 0.85 and 0.5, respectively. The b fraction is
important for developing the spatially averaged pre-
cipitation time series. If we simply averaged all of
the stations with valid data, we would include situ-
ations where there is precipitation at say one or two
stations. These situations do not reflect precipitation
occurrence and intensity for large regional averages.
We thus select an appropriate b value (in this case
0.5) and derive a new time series by simply averaging
respective station precipitation values when p $ 0.85
and q $ 0.50, else precipitation for that day was set
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to zero. If p , 0.85, the data for that day are set to
missing.
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