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ABSTRACT

To understand the sources of temporal and spatial variability of atmospheric evaporative demand across

the conterminous United States (CONUS), a mean-value, second-moment uncertainty analysis is applied

to a spatially distributed dataset of daily synthetic pan evaporation for 1980–2009. This evaporative demand

measure is from the ‘‘PenPan’’ model, which is a combination equation calibrated to mimic observations

from U.S. class-A evaporation pans and here driven by six North American Land Data Assimilation System

variables: temperature, specific humidity, station pressure, wind speed, and downwelling shortwave and

longwave radiation. The variability of evaporative demand is decomposed across various time scales into

contributions from these drivers. Contrary to popular expectation and much hydrologic practice, temper-

ature is not always the most significant driver of temporal variability in evaporative demand, particularly at

subannual time scales. Instead, depending on the season, one of four drivers (temperature, specific hu-

midity, downwelling shortwave radiation, and wind speed) dominates across different regions of CONUS.

Temperature generally dominates in the northern continental interior. This analysis assists land surface

modelers in balancing parameter parsimony and physical representativeness. Patterns of dominant drivers

are shown to cycle seasonally, with clear implications for modeling evaporative demand in operational

hydrology or as a metric of climate change and variability. Depending on the region and season, temperature,

specific humidity, downwelling shortwave radiation, and wind speed must together be examined, with

downwelling longwave radiation as a secondary input. If any variable may be ignored, it is atmospheric pressure.

Parameterizations of evaporative demand based solely on temperature should be avoided at all time scales.

1. Introduction

The distribution of soil and vegetative moisture is es-

sentially unknowable at temporal and spatial scales useful

to water managers. Instead, hydrologists interested in

quantifying the moisture flux from the terrestrial surface

to the atmosphere—that is, actual evapotranspiration

(ET)—use the concept of atmospheric evaporative demand

(E0) to quantify ET’s upper limit. ET is then estimated

by scaling down from E0 using simple vegetation-related

coefficients or land surface models (LSMs) that account

for actual (unknown) moisture conditions and/or vege-

tative moisture transfer. This paradigm underpins much

of operational hydrology, including streamflow pre-

diction, water management in both municipalities and

agriculture, and other decision-making enterprises that

rely on real-time quantification of surface water avail-

ability. This widespread use of E0 motivates a need for

operationally and scientifically sound E0 measures—

measures that rely on physically appropriate forcings,
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that yield accurate results at time and space scales rel-

evant to operational goals, and that avoid extraneous

modeling uncertainty or the omission of key sources of

variability. Understanding the drivers of space and

time variability of physically based E0 underpinning

our modeling approaches is a valuable step toward meet-

ing this need.

Traditional measures of E0 range from simple

temperature-based empirical models (e.g., Thornthwaite

1948; Blaney and Criddle 1950; Hamon 1961; Hargreaves

and Samani 1985) to more complex, physically based

parameterizations of the radiative and advective dy-

namics at the land surface–atmosphere interface. The

latter formulations are usually based on the combina-

tion equation of Penman (1948). Observation-based

E0 measures—most commonly the U.S. class-A

evaporation pan (see Fig. 1)—are affordable and sim-

ple, leading to their long-term, worldwide use in agri-

cultural settings (Stanhill 2002) and, recently, as

a metric of long-term hydroclimatologic change and

variability (Peterson et al. 1995; Brutsaert and Parlange

1998; Ohmura and Wild 2002; Roderick and Farquhar

2002; Hobbins et al. 2004, 2008; Roderick et al. 2009a,b).

However, despite the physical representativeness of

pan evaporation (Epan) observations, hydrologic op-

erations such as streamflow forecasting and water

management require spatially continuous estimates in

the past and the future. Frequently these hydrologic

operations use the simplistic temperature-based E0

approaches that distill E0 variability down to that of

a single driver (temperature). This reliance on sim-

plistic representations of E0 also extends to drought

monitoring and to climate research on longer time

scales: for example, in the Palmer drought severity in-

dex (PDSI; Palmer 1965), which is central to much of

current drought-monitoring practice in the United

States (e.g., in the U.S. Drought Monitor of Svoboda

et al. 2002) and to worldwide, long-term drought-

trend analyses (e.g., Dai et al. 2004). Reliance on ET

from the PDSI’s E0-forced surface hydrology model

(see supporting information in Hobbins et al. 2008 for

details) has led to indications of drying under warming

that have been shown to be contrary to both obser-

vations and model results forced by E0 observations

from evaporation pans (Moonen et al. 2002; Chen

et al. 2005; Hobbins et al. 2008). In this context, the

benefits of using a more physically representative

calculation across all time scales and a more realistic

E0 are clear.

Simple sensitivity analyses can quantify the degree to

which a hydrologic variable responds to its hydro-

meteorologic drivers, but do not account for the observed

variability of those drivers. For example, Eslamian et al.’s

(2011) finding that Penman–Monteith reference ET is

extremely sensitive to variations in relative humidity is

useful insofar as we establish that relative humidity is, in

fact, variable at all. If a driver is nearly constant, the

sensitivity of the response variable to it is moot. Robust

examination of long-term trends and variability in the

hydrologic cycle must address the central questions,

‘‘What meteorological and/or radiative input(s) drive

the spatial and temporal variability of E0? And do our

chosen methods capture this variability?’’ Answering

these questions is the primary motivation of this paper.

In this study, we use a physically based formulation of

E0—the so-called PenPan model of Rotstayn et al.

(2006), which is a Penman-based equation that repli-

cates Epan observations well—to synthesize contermi-

nous United States (CONUS)-wide surfaces of Epan.

This model is outlined in section 2 and appendix A. In

our examination of the temporal and spatial variability

of modeled E0 across various time scales, we move be-

yond a pure sensitivity analysis; instead, we enhance our

knowledge of sensitivities of E0 to its drivers by applying

a mean-value second-order uncertainty protocol (Mailhot

and Villeneuve 2003). We first analytically derive the

sensitivities of the response variable (in our case, Epan)

to its drivers (e.g., temperature). To these sensitivities,

we then apply the observed variability of each driver

varying alone and in pairs, thereby permitting a de-

composition of the temporal variability of Epan across

space into the relative contributions from all of its drivers.

In general, such an analysis will identify which drivers—

by dint of their own uncertainty or variability—may

introduce the greatest error, and thus may require the

most correction effort, and which drivers are essential

to achieve both model parameter parsimony and physical

representation.

FIG. 1. A typical U.S. class-A evaporation pan. (Photo courtesy of

the U.S. National Weather Service.)
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2. Methodology

Sections 2a and 2b briefly describe the PenPan model

and the forcing datasets used and summarize the resulting

Epan reanalysis used for E0 used in the variability analysis.

Section 2c compares the new Epan reanalysis to observed

monthly Epan observations and to an atlas of Epan cli-

matology. Section 2d describes the concept of the vari-

ability analysis. In section 2e, the spatial distributions of

the sensitivities of the Epan model to its drivers are sum-

marized (the sensitivity expressions are derived in ap-

pendix A). Section 2f describes the metric for quantifying

contributions to Epan variability by each of its drivers.

a. Epan formulation and data

In his seminal work, Penman (1948) codified the con-

cept of atmospheric evaporative demand in a ‘‘combina-

tion equation’’ for potential evaporation, and verified it

against Epan observations. The Penman equation is the

core of most physically based models of E0—that is,

models that account for both advective and radiative

forcings—including the ‘‘PenPan’’ model used in this

study. Essentially, the PenPan model is a Penman equa-

tion adjusted such that standard meteorological data and

further climate model data can drive simulations of U.S.

class-A pan evaporation (Fig. 1; details in appendix Aa).

The model arose from work on the radiative (Linacre

1994) and advective (Thom et al. 1981) drivers of Epan

that together resolve the differences between Penman’s

(1948) potential evaporation for a flat surface and that for

the above-ground U.S. class-A evaporation pan. In the

PenPan model, Rotstayn et al. (2006) combined these

enhancements of driver characterizations to account for

the extra solar radiation intercepted by pan walls, the

extra surface area for sensible heat transfer, and the ef-

fects of turbulence over the water surface resulting from

the pan walls. It is becoming a widely used Epan model,

and has been driven by both observations and climate

model data to decompose past monthly Epan trends

(Roderick et al. 2007), to verify GCM outputs (Rotstayn

et al. 2006), to examine Epan trends as estimated by re-

analyses products and predicted by GCMs (Johnson and

Sharma 2010), and to examine land surface–atmosphere

interactions that result in changes in both point E0

and areal ET (Shuttleworth et al. 2009). PenPan-derived

Epan has been shown to closely match observations of

monthly Epan across Australia (Roderick et al. 2007); the

results of a similar verification across CONUS are de-

scribed in section 2c. The PenPan formulation—shown

in more detail in appendix Aa—is summarized here:

Epan 5
D

D 1 apg

Qn

l
1

apg

D 1 apg
fq(U2)(esat 2 ea), (1)

where Epan is in kg m22 s21 (equivalent to mm s21); Qn

is the net available energy [W m22; Eq. (A8)]; fq(U2) is a

‘‘wind function’’ [kg m22 s21 Pa21; Eq. (A9)] of the 2-m

wind speed U2 (m s21); esat and ea are the saturated and

actual vapor pressures (Pa), respectively [Eqs. (A11)

and (A12)]; l is the latent heat of vaporization [J kg21;

Eq. (A13)]; D is desat/dT (Pa K21) at T (K); aP is the ratio

of effective surface areas for heat and water-vapor

transfer in a pan [Eq. (A10)]; and g is the psychrometric

constant (Pa K21). To obtain Epan in the more familiar

units of mm day21, multiply by 86 400.

b. 30-yr reanalysis of Epan

We used the PenPan formulation to generate a 30-yr,

daily reanalysis of Epan across CONUS at a 0.1258 res-

olution from 1 January 1980 to 31 December 2009. The

model is driven only by the following six meteorological

and radiation drivers drawn from the North American

Land Data Assimilation System (NLDAS; Mitchell et al.

2004): 2-m air temperature T (K), 2-m specific humidity

q (kg kg21), surface pressure Patm (Pa), zonal and me-

ridional components of 10-m wind speed U10 (m s21),

downwelling shortwave radiation Rd (W m22), and

downwelling longwave radiation Ld (W m22). The 2-m

wind speed U2 (m s21) required for the PenPan model is

scaled from U10 assuming the following vertical profile

of wind speed (Brutsaert 1982):

Uz
1

5 Uz
2

z1

z2

� �
1/7

, (2)

where Uz is the wind speed at height z (m) above the

ground and z1 and z2 are the heights at which wind speeds

are required and available (10 m here), respectively. For

application in the model, the hourly reanalysis drivers are

aggregated to daily means (the wind components are first

converted to hourly wind speeds). In the framework of a

variability analysis, these drivers are specified as random

variables normally distributed with a known mean and

variance.

Figure 2 summarizes the mean annual Epan and the

standard deviations of annual, January, and July Epan

aggregated from daily totals; similar results may be

obtained for time scales as short as individual days. In line

with (but independent of) observations from evaporation

pans, our synthetic annual Epan is highest in the sunniest,

warmest, driest, and windiest regions of CONUS (Fig.

2a). The annual variability of Epan—here estimated by its

standard deviation—does not match the spatial pattern of

its annual magnitude. The greatest variability lies in

a swath covering the Texas and Gulf Coast region and

the High Plains, with a further regional maximum in
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Northern and central California (Fig. 2b). To demonstrate

the intra-annual change of variability in Epan, we contrast

January (Fig. 2c), when the area of greatest variability is in

Texas and eastern New Mexico, with July (Fig. 2d), when

the greatest variability is found in the U.S. High Plains

(and the prairies of Canada), with a maximum in

northern Texas, Oklahoma, and Kansas.

c. Verification of NLDAS-driven, PenPan-derived
Epan across CONUS

We verify our NLDAS-driven, PenPan-modeled Epan

estimate of E0 against observations across CONUS: first

in spatial distribution, then in the mean, and finally in

the variability.

To verify the spatial distribution, we compared our cli-

matological warm-season [i.e., May–October (MJJASO)]

Epan surface to the widely used version of the same in the

Farnsworth et al. (1982) atlas (map 1; as this latter map

is not available in a useful digital format, this compari-

son is not shown here). However, various caveats apply

to the comparison. First, the Farnsworth et al. (1982)

map is not simply interpolated climatological mean

warm-season Epan: the source data are drawn from

various pan types—class-A pans, sunken pans, and

floating pans—and from Epan estimated using the Penman

(1948) equation. Second, across western CONUS and

mountainous areas of eastern CONUS, Farnsworth et al.

(1982) correct their Epan estimates for elevation within

physiographic regions. Third, their Epan-elevation rela-

tions are estimated by eye and their final map is drawn by

hand. Finally, the time periods do not coincide: in this

study we use 1980–2009, whereas Farnsworth et al. (1982)

use 1956–70. Caveats notwithstanding, the broad spatial

patterns and features of both surfaces match well: re-

gional troughs and ridges coincide; both represent well

the topographic heterogeneity of western CONUS and

the Appalachian region of eastern CONUS; both show

Epan declining with latitude in eastern CONUS and with

elevation CONUS-wide; and both show higher Epan in

sunnier, windier, warmer, and drier regions, with maxima

in the lower valleys of the desert Southwest.

The means and variabilities of our modeled Epan are

verified against observed Epan from 251 evaporation pans

in the National Climatic Data Center (NCDC) Summary

FIG. 2. The spatial variability of Epan, as estimated by the PenPan model driven by NLDAS data for 1980–2009:

(a) mean annual Epan (mm yr21), and standard deviations of (b) annual Epan (mm yr21), (c) January Epan (mm

month21), and (d) July Epan (mm month21).
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of the Day (NCDC 2011a) and NCDC Summary of the

Month (NCDC 2011b) datasets. Observations of Epan

are drawn from those pans reporting .66% of warm-

season months (i.e., .95 months) in the period May

1979 to August 2002. This verification dataset maxi-

mizes geographic coverage of the fit while capturing

the growing season across the vast majority of CONUS

(a CONUS-wide, year-round verification is not possi-

ble because of the freezing of pans across most of the

domain).

The fit of our modeled Epan to observed CONUS pan

data is shown in Fig. 3. The primary reasons for the

greater error here than in the Australian verification of

PenPan Epan (Roderick et al. 2007) (see Table 1, bottom

row) are our use of coarse (0.1258) gridded drivers as

opposed to the site-specific point observations used in the

Australian study, and that CONUS is more complex in

topography and hydroclimate than Australia. Given that

model calibrations are biased toward mean conditions

and low-resolution reanalyses inputs are biased toward

spatial mean conditions, one should expect poorer mod-

eling of Epan at the extremes and an underestimation of

observed Epan variability. This expectation is confirmed in

the positive intercepts and subunity monthly slopes shown

in Table 1, and in a direct comparison of variabilities,

wherein we note that our modeling slightly underes-

timates observed variability, but that the variabilities

correspond more closely in eastern CONUS and at less

variable pans. Notwithstanding these caveats, this verifi-

cation supports that of Roderick et al. (2007) in Australia.

We conclude that, across CONUS, Epan from the PenPan

model corresponds well to observations of Epan and of E0

in general.

d. Variability analysis

We perform a mean-value, second-moment vari-

ability analysis (Mailhot and Villeneuve 2003) to de-

compose the variability observed in our synthetic Epan

into the contributions to variability that derive from

all model drivers. In this section, we first outline the

approach, in which we derive a general expression for

Epan variability expressed as contributions from the

variabilities of, and sensitivity to, all of its drivers

acting alone and covarying in all possible pairs [Eq. (7)].

In subsequent sections, we apply two simplifications to

the model and derive analytic expressions of the sensi-

tivities of Epan to its drivers [Eqs. (A15)–(A20) in ap-

pendix Ab] and map the sensitivities to each driver, each

driver’s variance, and examples of covariances of drivers

acting in pairs.

FIG. 3. Verification of the NLDAS-driven, PenPan-modeled Epan

against observed Epan drawn from the class-A evaporation pans

across CONUS for the warm season (i.e., MJJASO). Verification

data are 29 978 monthly Epan totals from 251 pans shown in the inset

map. The dashed line represents a perfect fit. The solid line repre-

sents the best fit of the modeled Epan to this lumped population; the

statistics of the fits to individual months are shown in Table 1.

TABLE 1. The statistics of the monthly relations between observed and NLDAS-modeled Epan across CONUS. The column marked ‘‘n

(No. pans)’’ reports the number of monthly data drawn from the number of pans shown in the parentheses. The row marked ‘‘MJJASO

lumped’’ is for the fit shown in Fig. 3. The bottom row summarizes the Australian verification described in Roderick et al. (2007) for

comparison.

n (No. pans) R2 RMSE (mm month21) Slope Intercept (mm month21)

May 5010 (251) 0.686 55.08 0.82 75.80

June 5275 (251) 0.711 65.57 0.80 95.82

July 5337 (251) 0.677 77.33 0.80 112.65

August 5281 (251) 0.666 70.78 0.78 105.01

September 5098 (251) 0.645 53.27 0.75 81.83

October 3977 (238) 0.598 38.08 0.68 63.58

MJJASO lumped 29 978 (251) 0.756 62.33 0.92 63.76

Australia, 12 months

(Roderick et al. 2007)

5071 (26) 0.95 24 1.01 7.7
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The strict derivation of the variability in our syn-

thetic Epan makes no assumptions about stationarity

and uses only the six drivers as they are presented by

NLDAS:

Epan 5 f (T, q, Patm, U10, Rd, Ld). (3)

In limiting our analysis to a second-order expansion,

the variability in Epan (s2
Epan

) derives from the vari-

abilities in all of its drivers acting independently and

covarying. These variability contributions require

analytic expressions of the sensitivities of Epan to each

driver, the observed variance of each driver, and the

observed covariance of each pair of drivers. The var-

iability in Epan may be expressed more concisely in

matrix algebra form as

s2
E

pan
’ gTCg, (4)

where g is the vector of all drivers’ sensitivities to Epan,

and gT its transpose, defined as

gT [

"
›Epan

›T

›Epan

›q

›Epan

›Patm

›Epan

›U10

›Epan

›Rd

›Epan

›Ld

#
,

(5)

in which the partial derivatives (the sensitivity expres-

sions) are analytic expressions evaluated at the drivers’

means for each point in space; and C is the covariance

matrix—that is, a matrix describing the variances s2
X of

each driver and the covariances sX,Y between each pair

of drivers:

C [

2
66666666664

s2
T sT ,q sT,P

atm
sT ,U

10
sT ,R

d
sT ,L

d

sq,T s2
q sq,P

atm
sq,U

10
sq,R

d
sq,L

d

sP
atm

,T sP
atm

,q s2
P

atm
sP

atm
,U

10
sP

atm
,R

d

sP
atm

,L
d

sU
10

,T sU
10

,q sU
10

,P
atm

s2
U

10
sU

10
,R

d
sU

10
,L

d

sR
d
,T sR

d
,q sR

d
,P

atm
sR

d
,U

10
s2

R
d

sR
d
,L

d

sL
d
,T sL

d
,q sL

d
,P

atm
sL

d
,U

10
sL

d
,R

d
s2

L
d

3
77777777775

. (6)

Equation (4) for s2
Epan

expands into the full expression of contributions from all of its drivers as follows:

s2
E

pan
’

›Epan

›T

2

s2
T 1

›Epan

›T

›Epan

›q
sT ,q 1

›Epan

›T

›Epan

›Patm

sT ,P
atm

1
›Epan

›T

›Epan

›U10

sT ,U
10

1
›Epan

›T

›Epan

›Rd

sT ,R
d

1
›Epan

›T

›Epan

›Ld

sT ,L
d

1
›Epan

›q

2

s2
q 1

›Epan

›q

›Epan

›T
sq,T 1

›Epan

›q

›Epan

›Patm

sq,P
atm

1
›Epan

›q

›Epan

›U10

sq,U
10

1
›Epan

›q

›Epan

›Rd

sq,R
d

1
›Epan

›q

›Epan

›Ld

sq,L
d

1
›Epan

›Patm

2

s2
P

atm
1

›Epan

›Patm

›Epan

›T
sP

atm
,T 1

›Epan

›Patm

›Epan

›q
sP

atm
,q 1

›Epan

›Patm

›Epan

›U10

sP
atm

,U
10

1
›Epan

›Patm

›Epan

›Rd

sP
atm

,R
d

1
›Epan

›Patm

›Epan

›Ld

sP
atm

,L
d

1
›Epan

›U10

2

s2
U

10
1

›Epan

›U10

›Epan

›T
sU

10
,T 1

›Epan

›U10

›Epan

›q
sU

10
,q 1

›Epan

›U10

›Epan

›Patm

sU
10

,P
atm

1
›Epan

›U10

›Epan

›Rd

sU
10

,R
d

1
›Epan

›U10

›Epan

›Ld

sU
10

,L
d

1
›Epan

›Rd

2

s2
R

d
1

›Epan

›Rd

›Epan

›T
sR

d
,T 1

›Epan

›Rd

›Epan

›q
sR

d
,q 1

›Epan

›Rd

›Epan

›Patm

sR
d
,P

atm
1

›Epan

›Rd

›Epan

›U10

sR
d
,U

10
1

›Epan

›Rd

›Epan

›Ld

sR
d
,L

d

1
›Epan

›Ld

2

s2
L

d
1

›Epan

›Ld

›Epan

›T
sL

d
,T 1

›Epan

›Ld

›Epan

›q
sL

d
,q 1

›Epan

›Ld

›Epan

›Patm

sL
d
,P

atm
1

›Epan

›Ld

›Epan

›U10

sL
d
,U

10
1

›Epan

›Ld

›Epan

›Rd

sL
d
,R

d

.

(7)

In Eq. (7), we consider each line on the right-hand side

to represent the contributions to the variability in Epan

due to the inclusion of a single driver in the Epan pa-

rameterization: the first term on the line representing that

from the driver considered varying independently of

other drivers, and the next five terms representing that

from the driver covarying with all other drivers. Note that

covariances are commutative (i.e., sY,X 5 sX,Y), so terms

for the contribution of a given pair of covarying drivers

occur twice in Eq. (7); in this analysis, however, it is our

goal to conserve variability to as great a degree as pos-

sible, so we ascribe one each of the pair of identical terms

to each of the drivers. Thus, we aggregate the contribu-

tion (BX) to overall Epan variability of any single driver

X as the magnitude of the sum of all terms in each line

of Eq. (7), as follows:
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BX [
›Epan

›X

�
›Epan

›X
s2

X 1 �
m

i51

›Epan

›Yi

sX ,Y
i

� ��
. (8)

The overall variability in Epan from all n drivers is then

s2
E

pan
’ �

n

x51

BX . (9)

All variances s2
X and covariances sX,Y are derived

from time series analysis of the 30-yr NLDAS reanalysis

dataset. The sensitivities of Epan to its drivers ›Epan/›X

are derived analytically from the model formulation [Eq.

(1)] and shown in Eqs. (A15)–(A20) after making a sim-

ple approximation for the dependency of D and g on T

(see appendix B). All sensitivities are evaluated at the

drivers’ temporal mean values across the relevant time

scale, and their expressions are shown in appendix Ab.

e. Sensitivity of PenPan model to its drivers

Derivation of the sensitivities of PenPan-derived Epan

to its drivers ›Epan/›X necessitates developing an ex-

pression of the PenPan equation [Eq. (1)] in terms of

constants and the six time-varying independent ran-

dom variables (i.e., the drivers) from the NLDAS da-

taset. The development of this expression is shown in

appendix Aa, and the derivations of the sensitivities of

Epan to each of its drivers are shown in appendix Ab.

The spatial variation in the sensitivity of annual Epan to

each driver is shown in Fig. 4. Maps are derived by ap-

plying Eqs. (A15)–(A20) at each grid cell with annual

means of all drivers. The graininess in the spatial patterns

of some of the sensitivities (i.e., ›Epan/›T, ›Epan/›q, and

›Epan/›Patm) is likely due to the NLDAS data assimila-

tion of U10. The other sensitivities that not are functions

of U10—›Epan/›U10, ›Epan/›Rd, and ›Epan/›Ld —are not

grainy.

Of the six drivers’ annual sensitivities exhibited in Fig. 4,

the most complex spatial patterns are those of ›Epan/›T,

and ›Epan/›q, because of the variety of drivers that ap-

pear in their expressions [Eqs. (A18) and (A20)]. For

›Epan/›T, a function of all six drivers [Eq. (A20)], values

are highest in eastern CONUS, where Fig. 4a shows

maximal regions in Texas and Oklahoma and a de-

creasing northward trend away from the Gulf of Mexico.

For ›Epan/›q, a function of four drivers [Eq. (A18)],

values are highest in western CONUS away from the

Pacific Northwest (Fig. 4b); in eastern CONUS, it de-

creases northward to a minimum around Maine (and in

the James Bay region of Ontario and Quebec in Canada).

For ›Epan/›Patm, a function of three drivers [Eq. (A16)],

values are highest in western CONUS and, while generally

lower in eastern CONUS, increases northward (Fig. 4c).

The remaining sensitivities—›Epan/›U10, ›Epan/›Rd, and

›Epan/›Ld—exhibit less complicated and more intui-

tively tractable spatial patterns: they are all functions of

three or fewer drivers. For ›Epan/›U10 [Eq. (A17)],

values are greatest in the desert Southwest and areas

where the vapor pressure deficit (i.e., esat 2 ea) is the

greatest (Fig. 4d). Although this is not shown, the con-

verse is also true: the sensitivity of Epan to vapor pressure

deficit is greatest in the windiest (mountainous) areas: the

Rocky Mountains, the Cascades, the Sierra Nevada, and

the Appalachians. This pattern is to be expected from Eq.

(1), from which Eq. (A17) is derived. The spatial patterns

of ›Epan/›Rd [Eq. (A19)] and ›Epan/›Ld [Eq. (A15)] are

very similar: both exhibit negative latitudinal and eleva-

tional gradients (Figs. 4e,f). Over eastern CONUS, the

latitudinal gradient is clearest, with the Appalachians ev-

ident as lower sensitivities; in western CONUS, the ele-

vational gradient is clearest, with lower sensitivities picking

out the highest elevations of the Rocky Mountains and the

Cascade and Sierra Nevada ranges. In this sense, both

spatial patterns closely resemble that of mean annual T,

which, in the case of ›Epan/›Ld, is its only driver.

Recalling that all variances s2
X and covariances sX,Y

are quantified through time series analyses, we can now

decompose the overall variability in the output s2
Epan

(Fig. 2) into the variabilities of all of its drivers.

Figure 5 shows the spatial patterns of variability of

each driver displayed as its coefficient of variation

(CVX 5 sX/mX). The CVX indicates the potential impact

that driver X can have on Epan variability, given that

Epan is sensitive to it, and CVX normalizes this variation

across variables of greatly different absolute values.

First, from examining the CONUS-wide spatial statistics

(i.e., spatial means and standard deviations) of each

CVX, it is apparent that the drivers exhibiting the

greatest variability across CONUS are, in descending

order, q, U10, Rd, and Ld; T and Patm are the least vari-

able. We next describe each spatial pattern in turn

(given the wide variation in CVX values between the

drivers, it was not useful to plot them on a standardized

scale; instead, we indicate the range and mean in the

text). The pattern of T exhibits the greatest variability

in the continental interior (Fig. 5a; northern CONUS

and southern Canada) and minima along the coasts—

particularly the West Coast [min(CVT) 5 0.0006,

mean(CVT) 5 0.0028, max(CVT) 5 0.0077]. The vari-

ability of q (Fig. 5b) is greatest in the southwestern

CONUS and lowest in eastern CONUS, reaching regional

minima along all coasts, and a nationwide minima along

the Gulf Coast [min(CVq) 5 0.0141, mean(CVq) 5 0.0526,

max(CVq) 5 0.1243]. The pattern of Patm is most variable

in the Pacific Northwest and along the mid-Atlantic coast

(Fig. 5c), but exhibits regional minima in the continental

interior and the desert Southwest [min(CVPatm
) 5 0.0003,
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mean(CV
Patm

) 5 0.0006, max(CV
Patm

) 5 0.0011]. The

variability of U10 (Fig. 5d) exhibits a complex spatial

pattern, with maxima in the region of the lower Mississippi

valley and Texas Gulf Coast, the Colorado River basin,

and the interior Pacific Northwest, and minima in much

of rest of western CONUS, the Great Plains, and the

Northeast [min(CVU10
) 5 0.0191, mean(CVU10

) 5 0.0392,

max(CV
U10

) 5 0.1540]. The variability of Rd (Fig. 5e)

divides the country into two: a maximum across the

eastern half of CONUS and a minimum across the western

half [min(CVR
d
) 5 0.0052, mean(CVRd

) 5 0.0231,

max(CVRd
) 5 0.0519]. The variability of Ld (Fig. 5f)

exhibits minima through the center of CONUS, the Great

Plains, and in the Northeast, and a maximal region in the

FIG. 4. Sensitivity of annual Epan to the six NLDAS drivers from Eqs. (A15)–(A20), determined using mean values

for annual data for 1980–2009: (a) ›Epan/›T [(mm yr21) K21], (b) ›Epan/›q [(mm yr21) (kg kg21)21], (c) ›Epan/›Patm

[(mm yr21) Pa21], (d) ›Epan/›U10 [(mm yr21) (m s21)21], (e) ›Epan/›Rd [(mm yr21) (W m22)21], and (f) ›Epan/›Ld

[(mm yr21) (W m22)21]. Note, scales are selected to optimize display of spatial variability and do not represent the

complete range of annual sensitivity.
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western United States, particularly in the Upper Colo-

rado River basin and northern Great Basin [min(CVLd
) 5

0.0058, mean(CVLd
) 5 0.0122, max(CVLd

) 5 0.0232].

Figure 6 shows examples of the spatial patterns of

annual and seasonal covariance of T and Rd. The spatial

and temporal distribution of positive and negative co-

variances between T and Rd is notable as it can refute or

support the common assumption that T and Rd covary

positively and therefore that T can replicate the vari-

ability of Rd, as daytime heating of the surface is

presumed to follow from clearer skies, and daytime

cooling from increased cloud cover. This assumption—

referred to as ‘‘the T-Rd assumption’’—lies at the heart

of parameterizations of E0 that are based solely on T,

such as the Thornthwaite (1948) and Hargreaves and

Samani (1985) formulations. Clearly, the T-Rd assump-

tion does not hold in regions or seasons that exhibit

negative covariance in T and Rd. Figure 6a indicates that

the annual T-Rd covariance is indeed positive across the

vast majority of CONUS, but not in Florida, the south

FIG. 5. Coefficients of variation (CVX) of annual time series of the following six NLDAS drivers, as observed for

1980–2009: (a) T, (b) q, (c) Patm, (d) U10, (e) Rd, and (f) Ld. Note that scales are selected to optimize display of spatial

variability and do not represent the complete range of annual CVX.
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Atlantic and Pacific coasts, and in patches of the

mountain west. There is also significant seasonal var-

iation in T-Rd covariance. In winter (see Fig. 6b) over

much of CONUS—particularly in the northern, west-

ern, and southeastern states—heating correlates with

cloud cover, presumably as the increased Ld during the

day and particularly at night counteracts the cooling

effects of decreased daytime Rd, in contravention of

the T-Rd assumption. In summer (see Fig. 6c), T and Rd

positively covary across all of CONUS except the

desert Southwest and patches of Colorado, where they

are again negatively correlated. In particular, the T-Rd

assumption does not hold in the southeastern CONUS—

a region of the highest variability of Rd (Fig. 5e). Here, the

potential errors thrown up by use of parameterizations

that rely on the T-Rd assumption will be compounded by

the inability to capture the enhanced variability of Rd. In

contrast to the covariance of T and Rd, covariances be-

tween many of the pairs of drivers can be slight and it may

be difficult to draw meaningful conclusions from them.

f. Quantifying variability contributions

As shown in Eq. (7), the contribution to the variability

in Epan of any single driver X is a function of terms com-

prising contributions due to its own variability s2
X and

to the variability arising from its covariance with other

drivers (Y). The variance terms [i.e., the first term in

each line of Eq. (7)] are always positive and so always act

FIG. 6. Covariances of T with Rd [sT,Rd
(K W m22)], as observed from NLDAS data for 1980–2009, for the (a) annual

time scale and the months of (b) January and (c) July. Maps (b) and (c) are plotted to the common scale.
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to augment Epan variability; the covariances between

drivers and sensitivities [i.e., the components of the re-

maining terms in each line of Eq. (7)] are often negative

and so act to decrease Epan variability. This complicates

the issue of comparing the relative contributions of each

driver. Recall that in Eq. (7) we defined BX, the contri-

bution to overall Epan variability of driver X, as the

magnitude of the sum of augmenting and reducing terms.

We now define the power or strength of driver X (bX) by

normalizing its contribution by the sum of magnitudes of

the contributions for all drivers, as follows:

bX [
jBX j

�
n

x51

jBX j
3 100%. (10)

Note that, because of our use of the magnitudes (the

absolute values) of variability in drivers,

s2
E

pan
6¼ �

n

x51

jBX j; (11)

that is, the sum of the variability contributions of the

drivers does not necessarily sum to the variance in Epan.

3. Results

Given the multiple steps and inputs to this variability

analysis of E0, there are more ways to parse the results

than space here allows. The variety of possible analyses

largely depends on the region and season of interest and

on the motivation of the analyst. Here, we summarize

the main points across CONUS, always focusing on

addressing the motivating question raised in the in-

troductory section, ‘‘What drives the variability of E0?’’.

Figure 7 demonstrates the spatial distribution of each

driver’s power bX. Immediately clear here is the domi-

nance of T and, to a lesser degree, q and Rd. The power bT

reaches a maximum of nearly 90% in North Dakota and

Minnesota (Fig. 7a), and generally remains over 50%

over the northern half of CONUS and the Atlantic coast;

it decreases toward the south (particularly southern

Florida) and toward the Pacific and Gulf coasts. The

distribution of bRd
(Fig. 7e) increases toward the south-

eastern states and the Pacific coast [max(bRd
) 5 73%

along the Gulf Coast of Florida], but shows that Rd has

the least effect (lowest bRd
) in central CONUS, the in-

terior west, and the Northeast states. The influences of q

and U10 on the variability of annual Epan (Figs. 7b,d) show

extensive regional maxima across the southwestern

quadrant of CONUS (where bU10
reaches ;35% across

the Colorado Plateau and bq reaches ;46% in southern

Arizona), but reach their highest values in a small region

of southern Florida [max(bU10
) 5 45%; max(bq) 5 56%].

The relative weakness of Patm and Ld in affecting the

variability of annual Epan is also evident (Figs. 7c,f): no-

where does bPatm
exceed 2.2%, and only across south-

eastern Arizona and scattered patches of the western

CONUS (,1.5% of CONUS) does bLd
.

By mapping and summarizing annual and monthly bX,

Fig. 8 demonstrates significant time–space variation in

which driver contributes the greatest variability to Epan.

Figure 9 demonstrates, for each of the six drivers, the

spatial pattern of its rank in contributing to annual Epan

variability: that is, Fig. 9 decomposes the information

regarding annual Epan variability in Fig. 8.

Figure 8a exposes regional climatic distinctions in the

dominant drivers of annual Epan variability—that is, those

ranked highest. Over 99.95% of CONUS, one of only

three individual drivers (T, q, and Rd) is the single domi-

nant driver of annual variability, with bT ranked first (i.e.,

highest) across the vast majority of CONUS (92.19% of

CONUS by area). The exceptions to this bT dominance

are as follows: northern Texas and the low deserts of

California and Arizona (along with much of western

Mexico), where bq is ranked first (4.85% of CONUS);

Florida and the northern Gulf Coast, where bRd
is ranked

first (2.92% of CONUS); and a few isolated pixels in the

desert Southwest and southern Florida, where bU10
is

ranked first (0.05% of CONUS). Figure 9 examines the

ranks of each annual variability driver more closely, and

indicates that bT is at its lowest rank (second and third) in

Florida, southern Arizona, and California (Fig. 9a). Of

further interest is the almost inverse relationship between

second ranked drivers: bq is second across the western two-

thirds of CONUS, excluding the Pacific Northwest (Fig.

9b), while bRd
is second or third across the remaining one-

third of CONUS, including the Pacific Northwest (Fig. 9e).

This relationship generally mimics the distinction be-

tween energy- and water-limited hydroclimates across

CONUS. The variable bU10
exhibits a regional maximum

in the southern High Plains and Colorado Plateau

(Fig. 9d), where it rises to second in rank (first in a few

isolated pixels); bLd
is ranked at its highest in northeastern

CONUS, the mid-Atlantic coast, and scattered regions of

the Pacific Northwest (Fig. 9f), where one would expect

regional maxima in the Ld flux; and bPatm
ranks no higher

than fourth (Fig. 9c), with no notable regional patterns.

The summary by area in Fig. 8b and the selected

monthly maps in Figs. 8c–f demonstrate the spatiotem-

poral volatility of the dominant drivers: bT, bq, bRd
, and

bU10
clearly ebb and flow across large portions of

CONUS, particularly its southern reaches during the

warm season. During the summer, Rd dominates over

most of the southeastern CONUS (Figs. 8d,e), while U10

dominates across the Colorado Plateau and Great Basin
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of southwestern CONUS (Fig. 8e) as a bU10
maximum

emerges in west Texas in May, spreads north and west

across the Colorado Plateau and Great Basin, before

disappearing after September. Later, in October, q dom-

inates across much of central southern CONUS, as a

maximal region of bq extends from Tennessee to Arizona

(Fig. 8f). The evolutions of these seasonal blooms of bq,

bRd
, and bU10

are indicated in Fig. 8b.

Figure 10 summarizes the relative power bX of each of

the six drivers as it is distributed by area across CONUS.

Each curve represents the nonexceedance of bX with

accumulating area. Higher curves indicate drivers that

make more powerful contributions to annual Epan vari-

ability (i.e., a greater area of CONUS at a given contri-

bution, or a greater contribution over a given area of

CONUS). The minimum and maximum of each curve

indicate the range of each bX, and its shape reflects how bX

varies (the rapid increases in slope of some of the drivers

near 0% and 100% of CONUS area are due to the lower

and upper tails of the bX distribution in space). For ex-

ample, bLd
varies from a minimum of zero (i.e., Ld makes

no contribution to the variability in annual Epan over some

parts of CONUS) to a maximum of 15.0% (i.e., Ld ac-

counts for 15.0% of the variability in annual Epan).

FIG. 7. The power bX of each of the drivers (a) T, (b) q, (c) Patm, (d) U10, (e) Rd, and (f) Ld in determining annual Epan

variability, expressed as percentages of �n
x51jBX j (where X represents the driver).
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This summary of the spatial variability of annual bX

indicates the relative significance of drivers in space and

time. That the power curve for T is the highest indicates

that, overall, it is the most powerful driver of annual

Epan variability across CONUS. Indeed, for 50% of

CONUS, T contributes at least 58.3% of annual Epan

variability. The next two most-powerful drivers are, in

order, q and Rd. In fact, q is ranked as second or first

driver across 67% of CONUS, while Rd is ranked second

or first driver across 31% of CONUS. Next, U10 ranks

first or second over only 2.5% of CONUS for annual

Epan variability. However, its contribution to seasonal

Epan variability is important: the region of U10 signifi-

cance that emerges in the summer months (see Fig. 8e)

corresponding to the uptick in the slope of the U10 power

curve accounts for ;30% of CONUS (i.e., above ;70%

of CONUS on the x axis). Clearly Patm and, to a lesser

degree, Ld are the least significant drivers of annual Epan

variability. This observation is supported by Figs. 7–9,

which show that Patm and Ld generally contribute little

FIG. 8. The dominant drivers of variability in Epan (a),(c)–(f) mapped and (b) summarized across annual and

selected monthly time scales. Maps are for (a) annual, (c) January, (d) April, (e) July, and (f) October. Bar graph (b)

indicates the areal proportion of CONUS over which each driver dominates at the annual time scale and for selected

warm-season months (Ld and Patm are not shown as they do not exhibit dominance at any tested time or space scales).

Regions in maps and bars in graph are shaded according to dominant driver.
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to the variability in annual Epan (Fig. 7), that neither is

anywhere the most significant contributor to either an-

nual or monthly Epan variability (Fig. 8), and that bLd

and bPatm
peak at ranks of 2 and 3, respectively (Fig. 9).

4. Summary and conclusions

Toward improving our understanding of the variation

of E0 (and hence ET) in space and time, and conse-

quently our ability to monitor and predict CONUS-wide

energy and water cycles, this first-order, second-moment

variability analysis of a physically sound measure of

atmospheric evaporative demand demonstrates the

contributions to temporal and spatial variability of an-

nual E0 by all of its drivers. We have outlined the

methodology and examined a measure of the power of

each driver as its relative magnitudes of variability

normalized by the sum of magnitudes from all drivers.

This power analysis quantifies the spatial and temporal

volatility of the importance of these variability drivers,

indicating where each driver dominates and in which

season. Like other work (Rotstayn et al. 2006; Roderick

et al. 2007), we show that our central assumption—that

Epan from the PenPan model synthesizes E0 well—holds

FIG. 9. Rank of power bX of each driver (a) T, (b) q, (c) Patm, (d) U10, (e) Rd, and (f) Ld of annual Epan variability

(where X represents the driver).
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up well against Epan observations. Although specific find-

ings [e.g., the sensitivity expressions in Eqs. (A15)–(A20)

for our particular suite of six drivers] relate only to the

PenPan model, the primary conclusions apply across the

gamut of physically based combination equations of E0.

This analysis is part of a broader effort to provide

a long-term reanalysis of physically based and accurate

NLDAS-driven E0 across CONUS, from 1979 to within

a few days of the present.

Numerous parameterizations currently exist for E0,

ranging from models favoring parameter parsimony and

based solely on T to more physically representative

formulations including radiative and advective dynam-

ics. Correctly identifying and including the dominant

drivers of E0 variability is crucial for any hydrologic

application that estimates actual ET from LSMs driven

by E0, such as streamflow forecasting and drought

analyses (e.g., Hobbins et al. 2008). The results pre-

sented herein have broad implications and potential

utility across hydrology, as they allow for the identifi-

cation of the drivers that require the most attention and

possibly correction in such formulations, versus those

that may be omitted in moving to a forecast context

where fewer data streams may be available to drive

a model. For modelers motivated by parameter parsi-

mony, this analysis indicates that one could eliminate

the least-powerful driver, Patm, from the parameteriza-

tion of Epan: instead, its spatial variability may be cap-

tured by surface elevation and consideration of the

atmosphere in purely hydrostatic balance. Further par-

simony gains might be made from parameterizing the

second least-powerful driver, Ld, by ea, T, and Rd (e.g.,

Shuttleworth 1992). In the context of forecasting E0 at

river forecast centers (RFCs)—as distinct from the

reanalyses examined in this paper—estimates of effec-

tive cloud amount, T, dewpoint temperature, and U2

from numerical weather prediction (NWP) models are

used to predict E0; these variables represent the four

most-powerful drivers used in our analysis (Rd, T, q, and

U10, respectively). The influence of Rd on the variability

in E0 underscores the paramount importance of pa-

rameterizing Rd accurately from effective cloud amount.

Of course, the estimation of T and—depending on re-

gion and season—q in forecasting E0 is of prime im-

portance, but it is generally assumed that NWP-based

techniques (and climate models) already forecast or

predict these drivers effectively.

Because of their simplicity, E0 parameterizations based

solely on T (e.g., Thornthwaite 1948; Hamon 1961;

Hargreaves and Samani 1985) are used in areas and ap-

plications for which they are ill suited—for example, the

use of the PDSI in drought monitoring and the consequent

flawed observations of midlatitude drying (Alley et al.

2007). As we show here, across distinct regions of CONUS,

T is not the greatest driver of annual E0 variability (across

10% of CONUS, or 8 3 105 km2, T provides less than 36%

of the variability of E0, while across more than half of

CONUS, using T alone limits one to less than 42% of the

observed variability in E0). In many regions where T does

dominate annual E0 variability, during the important

months of the growing season this dominance waxes and

wanes inversely with that of q and Rd, with U2 further

complicating the picture.

The seasonal and regional weaknesses of T-based

parameterizations arise because T cannot be used to

capture the variability of Rd in E0 parameterizations.

This finding follows from, first, the differences in sensi-

tivity of E0 to T and Rd and in their variabilities, and

second, the negative correlation of T and Rd over much

of CONUS on an annual time scale and over nearly all of

CONUS for some months. In many of these regions—

particularly southeastern CONUS—Rd is the top-ranked

variability driver, underscoring the importance of its di-

rect modeling (as opposed to substitution by the ques-

tionable T-Rd assumption). We find that T-based

parameterizations of E0 cannot capture its intra-annual

variability, which complements earlier findings (Hobbins

et al. 2008; Donohue et al. 2010) that such parameteri-

zations do not work at interannual time scales. We

therefore conclude that T-based parameterizations of E0

are to be avoided at all time scales. We have shown that at

an annual (and monthly) basis, across CONUS, param-

eterizations should include, at the least, Rd, T, q, and U10.

This finding also points to the fact that, depending on the

region and goals of analysis, different drivers may dom-

inate: for example, in attributing long-term trends in

observed monthly Epan in Australia to the relative effects

FIG. 10. The power-area response curves for each driver across

CONUS. The y axis indicates bX, which is the percentage contri-

bution of each driver (X) to the total variability of annual Epan from

Eq. (10). The x axis indicates the CONUS area percentage across

which this value of bX is not exceeded.
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trends in drivers of the PenPan model, Roderick et al.

(2007) found that U2 dominates trends.

We have explored and decomposed the variability of

annual E0, yet numerous related questions remain un-

explored. Using these data and methodologies, smaller-

scale analyses could target seasonal and regional de-

mands, such as the all-important growing season in

the western United States, where agriculture and

municipalities largely depend on water stored from the

spring melt. Specifically for the Colorado Basin RFC,

the bloom of high bU10
in the late spring and summer

across the Colorado Plateau and Great Basin implies

that replacing a temperature-based model with a com-

bination-type model would improve the monitoring

and forecasting of E0 and, consequently, the region’s

hydrologic applications such as streamflow fore-

casting. Overall, we find that regional and seasonal

variations in E0 forcing dynamics are important from

a water balance perspective, and argue for the adop-

tion of E0 estimation approaches that fully represent

these variations.
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APPENDIX A

Formulation of the PenPan Model and Sensitivities
to Its Drivers

a. The PenPan model

The PenPan model (Rotstayn et al. 2006) differs from

its parent Penman (1948) model by accounting for the

effects on the radiation incident to the pan sides (an in-

crease in net irradiance) and the presence of bird guards (a

reduction), as well as the effects on vapor transfer of extra

turbulence as wind crosses the pan sides. Herein we

summarize the aspects of the formulation of the PenPan

model that pertain to its expression in Eq. (A14), and the

sensitivities of Epan to its drivers [Eqs. (A15)–(A20)] de-

rived from Eq. (14). More detail of the model is given in

Rotstayn et al. (2006). Here, we address first the energetic

component, then the advective.

The energetic input to the pan, or the net available

energy, is expressed as

Qn 5 Rn 1 Ln 1
›W

›t
, (A1)

where Rn is the net shortwave radiation (W m22), Ln is

the net longwave radiation (W m22), and ›W/›t is the

time rate of change of heat energy stored in the pan

(W m22). Following, we deal with each term in turn.

The PenPan shortwave parameterization formulates

the total shortwave radiation incident to the pan Rd,P as

the observed shortwave incident to the ground surface

Rd multiplied by the summation of three terms. These

terms account for an increase in shortwave radiation

due to the interception of direct beam radiation, the

interception of diffuse radiation, and the interception of

extra shortwave radiation reflected from the ground

surface to the pan sides, as follows:

Rd,P 5 Rd[ fdirPrad 1 1:42(1 2 fdir) 1 0:42aS]. (A2)

In Eq. (A2), all parenthetical parameters are di-

mensionless: fdir is the fraction of Rd that is direct beam

radiation and this fraction is itself factored by the pan

radiation factor Prad to account for the extra shortwave

radiation intercepted by the pan sides. The surface al-

bedo aS is set to 0.22, a typical value for short green

grass. Here fdir is given by

fdir 5 20:11 1 1:31
Rd

Rtoa

, (A3)

while the pan radiation factor Prad varies as the follow-

ing function of latitude u (rad; positive north of the

equator):

Prad 5 1:32 1 4 3 1024 180f

p

� �
1 8 3 1025 180f

p

� �2

.

(A4)

In Eq. (A3), the extraterrestrial or top-of-atmosphere

shortwave radiation Rtoa (W m22) is calculated follow-

ing Shuttleworth (1992):

Rtoa 5 15:392
l

86 400
dr(vs sinf sind 1 cosf cosd sinvs),

(A5)

where the constant 15.392 represents the solar constant

expressed as an evaporative equivalent (mm day21), and

l is the latent heat of vaporization [J kg21; from Eq.

(A13) below]. The other variables are time dependent—dr

is the (dimensionless) relative distance from the earth to
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the sun, d is the solar declination (rad), and vs is the sunset

hour angle (rad)—and expressions for them are available

in Allen et al. (1998).

The net shortwave radiation to the pan Rn is then

calculated from

Rn 5 (1 2 aP)Rd,P, (A6)

setting aP to 0.14, for the albedo of a U.S. class-A pan

(Rotstayn et al. 2006).

Formulation of the net longwave radiation Ln to the pan

proceeds by assuming that the water surface emits long-

wave radiation as a blackbody and ignoring longwave ra-

diation from the pan sides, thereby yielding an overall bulk

emissivity « of 1 (Rotstayn et al. 2006). Net longwave ra-

diation Ln to the pan is therefore given by Eq. (A7) below

[note that in the original PenPan formulation, Linacre

(1994) assumed an annual mean Ln of 240 W m22]:

Ln 5 Ld 2 «sT4. (A7)

Following guidelines in Roderick et al. (2009a), the

monthly time scale in this analysis justifies the steady-

state assumption and permits assumption of negligible

heat-storage changes in the pan water ›W/›t. Equation

(A1) for the available energy for evaporation Qn then

becomes

Qn 5 Rn 1 Ln. (A8)

Turning to the advective component of the Epan for-

mulation, the vapor transfer function (or ‘‘wind func-

tion’’) fq(U2) (kg m22 s21 Pa21) is a linear expression,

similar to that first derived by Penman (1948):

fq(U2) 5 1:39 3 1028(1 1 1:35U2), (A9)

where U2 is in m s21.

To account for the extra surface area (i.e., the sides

and bottom of the pan) available for sensible heat

transfer over that available for vapor transfer, g is ev-

erywhere multiplied by the dimensionless ratio of

effective surface areas for the transfers of heat and

water-vapor aP:

aP 5
fh(U2)

fq(U2)
5 2:4. (A10)

The saturated vapor pressure esat (Pa) derives from

the following relation:

esat 5 610:8 exp

�
17:27(T 2 273:15)

237:3 1 (T 2 273:15)

�
, (A11)

for T given in units of K. The actual vapor pressure ea

(Pa) derives from the following relation:

ea 5
qPatm

0:622 1 0:378q
, (A12)

for dimensionless q and Patm in units of Pa.

Finally, the latent heat of vaporization l (J kg21) is

given as the following function of T (K):

l 5 2:501 3 106 2 2361(T 2 273:15). (A13)

To simplify the derivation of the sensitivities of

Epan to its drivers (particularly to T), we approximate

the functions of D/(D 1 apg) and apg/(D 1 apg) in

a similar fashion to Brutsaert (2005), using the linear

function of T shown in Eqs. (B1)–(B3) (see appendix

B). Then, into Eq. (1), we further substitute Eqs.

(A2), (A3), and (A5) to (A8) for Qn, Eqs. (2) and (A9)

for fq(U2), Eq. (A11) for esat, Eq. (A12) for ea, and Eq.

(A13) for l. This reveals the following complete ex-

pression for Epan (kg m22 s21) from the PenPan

model of synthetic Epan in terms of its six drivers (Rd,

Ld, T, U10, q, and Patm), constants («, s, aP, and aS,),

and parameters that are known with certainty for

a given point in time (dr, u, d), space (Prad), or both

(Rtoa, vs):

Epan 5
0:0115(T 2 273:15) 1 0:2006

2:501 3 106 2 2361(T 2 273:15)

3

�
(1 2 aP)Rd

�
Rd

1:31

Rtoa

(Prad 2 1:42) 2 0:11Prad 1 0:42aS 1 1:42 3 1:11

�
1 Ld 2 «sT4

�

1 [0:7994 2 0:0115(T 2 273:15)]1:39 3 1028

"
1 1 1:35U10

2

10

� �1/7
#

3

�
610:8 exp

�
17:27(T 2 273:15)

237:3 1 (T 2 273:15)

�
2

qPatm

0:622 1 0:378q

�
. (A14)
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b. Sensitivities of PenPan-derived Epan to the model
drivers

Equation (A14) then allows for expressions for the

sensitivity of Epan to each of its drivers to be derived by

partial differentiation with respect to the driver. Fol-

lowing, in Eqs. (A15)–(A20), these expressions are

shown in order of increasing complexity. The sensitivity

of Epan to Ld is as follows:

›Epan

›Ld

5
fT

l
. (A15)

The sensitivity of Epan to Patm is as follows:

›Epan

›Patm

5
( fT 2 1)fq(U2)q

0:622 1 0:378q
. (A16)

The sensitivity of Epan to U10 is as follows:

›Epan

›U10

5 (1 2 fT)1:39 3 1028 3 1:35
2

10

� �1/7

(esat 2 ea).

(A17)

The sensitivity of Epan to q is as follows:

›Epan

›q
5 ( fT 2 1)fq(U2)Patm

0:622

(0:622 1 0:378q)2
. (A18)

The sensitivity of Epan to Rd is as follows:

›Epan

›Rd

5
fT(1 2 aP)

l

�
Rd

2:62

Rtoa

(Prad 2 1:42)

2 0:11Prad 1 0:42aS 1 1:5762

�
. (A19)

The sensitivity of Epan to T is as follows:

›Epan

›T
5

fT

l
4«sT3 1 (Rn 1 Ld 2 «sT4)

0:0115l 1 2361fT

l2

1 (1 2 fT )fq(U2)esat

4098:171

(T 2 35:85)2
2 0:0115fq(U2)(esat 2 ea). (A20)

APPENDIX B

Simplifications

To simplify the derivation of the partial derivative

of Epan with respect to T, we approximate the func-

tions of D/(D 1 apg) and apg/(D 1 apg) in Eq. (1) as

linear functions of T, in a similar fashion to Brutsaert

(2005), as follows:

D

D 1 apg
5 g(T, Patm) ’ fT 5 a(T 2 273:15) 1 b,

(B1)

and, therefore:

apg

D 1 apg
’ 1 2 fT . (B2)

As shown in Fig. B1, for a fixed Patm of 1013.25 hPa

(data points shown, linear trends shown as solid lines),

analytic values of D/(D 1 apg) and apg/(D 1 apg) exhibit

a correlation coefficient R2 of 0.9961 to a linear fT across

a wide range of T (2108 to 408C). Across the range Patm 5

750 to 1013.25 hPa, the slopes of these relationships are

insensitive to Patm, varying only 5% from a 5 0.0121 at

Patm 5 550 hPa to a 5 0.0115 at Patm 5 1013.25 hPa.

FIG. B1. Approximations of D/(D 1 apg) [squares and bold

dashed line marked (a)] and apg/(D 1 apg) [circles and bold

dotted line marked (b)] by a linear fT for Patm 5 1013.25 hPa.

The dashed lines represent analytic D/(D 1 apg) and apg/(D 1

apg) at Patm 5 750 hPa [upper (a), lower (b)], and 1100 hPa

[lower (a), upper (b)].
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The variable a was then set to a value of 0.0115 (derived

for sea level Patm) across the range of Patm. The linear

fT approximation used for D/(D 1 apg) is therefore

defined throughout this study as follows:

fT 5 0:0115(T 2 273:15) 1 0:2006, (B3)

with apg/(D 1 apg) approximated by 1 2 fT.

APPENDIX C

Symbol List

a. NLDAS drivers

q 2-m specific humidity (kg kg21)

Ld Downwelling longwave radiation (W m22)

Patm Surface pressure (Pa)

Rd Downwelling shortwave radiation (W m22)

T 2-m air temperature (K)

U10 10-m wind speed (m s21)

b. Evaporation-related fluxes

E0 Atmospheric evaporative demand (includes Epan)

(mm day21)

Epan Pan evaporation (mm day21)

ET Actual evapotranspiration (mm day21)

c. Intermediate variables

aP Albedo of a U.S. class-A pan

(dimensionless)

aS Surface albedo (dimensionless)

bX0 Power or strength of driver X (%)

g Psychrometric constant (Pa K21)

g Vector of all partial derivatives

gT Transpose of g

›Epan/›X Sensitivity of Epan to driver X [mm day21

(units of X)21]

›W/›t Time rate of change of heat energy stored

in the pan (W m22)

d Solar declination (rad)

« Overall bulk emissivity (dimensionless)

l Latent heat of vaporization (J kg21)

u Latitude north (rad)

s2
Epan

Variance of Epan (mm day21)2

s2
X Variance of subscripted variable

(units of X)2

sSB Stefan–Boltzmann constant

(W m22 K24)

sX Standard deviation of driver X

(units of X)

sX,Y Covariance of drivers X and Y

[(units of X) 3 (units of Y)]

mX Mean of driver X (units of X)

vs Sunset hour angle (rad)

D desat/dT at T (Pa K21)

a Slope parameter in fT (1/T)

ap Ratio of effective surface areas for the

transfers of heat and water vapor

(dimensionless)

dr Relative distance from the earth to the

sun (dimensionless)

ea Actual vapor pressure (Pa)

esat Saturated vapor pressure (Pa)

fdir Fraction of Rd that is direct beam

radiation (dimensionless)

fq(U2) Vapor transfer function (or ‘‘wind

function’’) (kg m22 s21 Pa21)

fT Linear approximation to D/(D 1 apg)

(dimensionless)

m Number of possible pairs of drivers

(dimensionless)

max(�) Maximum of (�) across CONUS

[units of (�)]

mean(�) Mean of (�) across CONUS [units of (�)]

min(�) Minimum of (�) across CONUS

[units of (�)]

n Number of drivers (dimensionless)

z1 Height for which wind speed data are

required (m)

z2 Height at which wind speed data are

available (m)

BX Magnitude of the sum of augmenting

and reducing terms (W m22)2

C Covariance matrix of variances s2
X of,

and covariances sX,Y between, drivers

X and Y

CVX Coefficient of variation of driver X

(dimensionless)

Qn Net available energy (W m22)

Ln Net longwave radiation (W m22)

Prad Pan radiation factor (dimensionless)

R2 Correlation coefficient (dimensionless)

Rd,P Total shortwave radiation incident to an

evaporation pan (W m22)

Rn Net shortwave radiation (W m22)

Rtoa Extraterrestrial or top-of-atmosphere

shortwave radiation (W m22)

U2 2-m wind speed (m s21)

Uz Wind speed at z (m) above the ground

(m s21)

X Single driver (units of X)

Y Single driver (units of Y)
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