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ABSTRACT 

This study introduces medium range meteorological ensemble inputs of temperature and 

precipitation into the Ensemble Streamflow Prediction component of the National 

Weather Service River Forecast System (NWSRFS). The Climate Diagnostic Center 

(CDC) produced a reforecast archive of model forecast runs from a dynamically frozen 

version of the Medium Range Forecast (MRF) model. This archive was used to derive 

statistical relationships between MRF variables and historical basin average precipitation 

and temperatures. The later are used to feed the Ensemble Streamflow Prediction (ESP) 

component of the NWSRFS. Two sets of ESP reforecasts were produced: A control run 

based on historically observed temperature and precipitation and an experimental run 

based on MRF derived temperature and precipitation. This study found the MRF 

reforecasts to be generally superior to the control reforecasts, although there were 

situations when the downscaled MRF output actually degraded the forecast.  Forecast 

improvements were most pronounced during the rising limb of the hydrograph—at this 

time accurate temperature forecasts improve predictions of the rate of snow melt.  Further 

improvements in streamflow forecasts at short forecast lead times may be possible by 

incorporating output from high-resolution regional atmospheric models into the 

NWSRFS. 
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1. Introduction & Background 

Ensemble based river forecasts have been made by the Colorado Basin River 

Forecast Center (CBRFC) for many years with a component of the National Weather 

Service River Forecast System (NWSRFS) known as Ensemble Streamflow Prediction 

(ESP). The current operational practice at the CBRFC is to use ‘deterministic’ 

meteorological forecasts of temperature for 1-10 days and precipitation for 1-3 days 

following the initialization time of the forecast period.  After the meteorological forecast 

period, ensembles of historical temperature and precipitation data sequences are added to 

the end of the deterministic meteorological forecasts by blending to form ensemble model 

inputs extending out to several months.  While this approach provides probabilistic 

forecasts on seasonal time scales, it does not provide probabilistic forecast information 

for days 1-10.  Many applications (e.g., reservoir operations) can benefit from 

probabilistic forecast information on the shorter time scales as well.  This study 

demonstrates the use of medium-term (lead times from 1-14 days) probabilistic forecasts 

of temperature and precipitation in the NWSRFS. Previous studies (e.g. Wood et al, 

2002) have focused on improving streamflow forecasts using the ESP approach, but these 

studies are restricted to seasonal time scales. 

This study incorporates medium-range (1-14 day) forecasted atmospheric model 

input into an ensemble hydrologic model. In doing so, the hydrologic model translates 

both the forecast and its associated uncertainty into a hydrologic forecast. A description 

of the methodology including the study area, the atmospheric model, the downscaling 

technique, and the river forecast model will be presented. Results will be presented for a 

headwater basin and for a larger main stem basin.  
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2. Method 

Figure 1 shows the method by which meteorological forecasts are integrated into 

ESP river forecasts on an operational basis. Meteorological forecast information is 

derived from a Medium Range Forecast (MRF) model. This information is downscaled to 

basin scale temperature and precipitation in a manner that accounts for the forecast 

uncertainty. Finally, this information is fed into ESP to produce probabilistic river 

forecasts. This methodology will be described in this section. In addition, the study area 

and the Ranked Probability Skill Score (RPSS) will be described. 

 

2.1 Study Area 

The upper Colorado River Basin was chosen as the study area (Figure 2). Average 

annual precipitation varies from about six inches in the lower valleys to 50 inches in the 

mountainous terrain on the Continental Divide (Daly et al, 2002). Snow water equivalent 

ranges from near zero in the valley bottoms to 25 inches in the mountains. The hydrology 

of the upper Colorado River basin is dominated by snowmelt, for which temperature 

forecasts are important to determine the magnitude and timing of the melt.  As with most 

meteorological forecasts, the Medium Range Forecast model (MRF) forecasts of 

temperature are much better than precipitation, particularly at lead-time of more than two 

or three days (Clark and Hay, 2004), so we expect larger improvements here than in 

rainfall-dominated river basins.  

As modeled in the NWSRFS, the CBRFC has divided the upper Colorado into 27 

smaller basins shown in Figure 2. ESP is run separately over each of the smaller basins; 
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downstream basins include water routed from the basin(s) above. Each of the small 

basins contains two or three sub-basins divided by elevation. This allows for input of 

precipitation and temperature features that may be small in spatial extent or sensitive to 

elevation. ESP requires mean areal temperature (MAT) and mean areal precipitation 

(MAP) forecasted time series for each sub-basin.  

 

2.2 Ranked Probability Skill Score 

 The Ranked Probability Skill Score (RPSS) will be used to evaluate the 

probabilistic forecasts (Epstein 1969; Murphy 1969, 1971; Hersbach 2000). The 

continuous version of the Ranked Probability Score (RPS) upon which the RPSS is based 

is given by: 

 

dxxPxPRPS o
2)]()([ −∫= ∞

∞−               (2) 

 

where P(x) is the forecasted exceedence probability of variable x (daily streamflow for 

example) and Po(x) is the observed exceedence probability of x. For single value such as 

the observed volume on a particular day, the observed probability will be either zero or 

unity. The RPS is distance sensitive in that it increasingly penalizes forecasts that contain 

forecasted probability farther away from the observed quantity. The Ranked Probability 

Skill Score (RPSS) is based on the RPS and is given by: 
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where RPSf and RPSref are the forecast being evaluated and a reference forecast. The 

reference forecast is often taken to be climatology. RPSS values are less than or equal to 

unity. Positive RPSS values indicate percent improvement in forecast skill while negative 

values indicate the reference forecast is superior to the forecast being tested. 

 

2.3 CDC Reforecasting Experiment 

The atmospheric forecast model used in this study is the 1998 version of the 

National Centers for Environmental Prediction (NCEP) MRF model (this model was run 

by the National Oceanic and Atmospheric Administration (NOAA) Climate Diagnostics 

Center (CDC), as part of their reforecasting experiment; described here and in Hamill et 

al. 2004).  For the CDC experiments the MRF is run with a grid spacing of about 200 km, 

whereas the CBRFC sub-basin areas are irregularly shaped with highly variable spacing 

about of 20 km. Therefore a downscaling method (described later and in Clark and Hay, 

2004) is used to relate the MRF output to the smaller basin scale. Although the 

atmospheric models currently run at NCEP for weather prediction have much finer 

resolution, this study takes advantage of the CDC reforecasts to integrate the observed 

model error into ESP. 

A frozen version of the model is desirable rather than the most up-to-date version 

because this allows the estimation (and correction) of model biases and model errors.  It 

also provides a suitably long archive that can be used to develop statistical relations 

between the (coarse resolution) MRF output, and precipitation and temperature at local 



 7

scales.  Hamill et al. (2004) demonstrate that such post-processing of model output can 

result in substantial improvements over operational forecasts. 

Each MRF forecast initialization uses 15 different initial conditions from which 

meteorological forecast ensembles are derived. Only the control, or the best guess initial 

condition is used here because it was all that was available when this study began. 

However, a use of the ensemble mean may result in future improvements. The CDC 

reforecast dates from 1979 to the present. Only the portion coinciding with the CBRFC 

MAT and MAP calibrations, 1979 – 1998, was used in the study. 

 

2.3 Downscaling 

 A statistical downscaling method is used to translate the coarse resolution MRF 

output to the local scales important for hydrologic modeling (Clark and Hay, 2004).  

Seven variables from the MRF model are interpolated to the center of each sub-basin. 

These variables have previously been found to be important for downscaling precipitation 

and temperature in the contiguous USA (Clark and Hay, 2004). These variables are 2m 

air temperature, precipitation, 700mb RH, sea level pressure, 10m u and v wind 

components, and total column precipitable water. The interpolation includes all MRF grid 

points within 500 km of the basin but grid points are weighted by the inverse of their 

distance to the basin so that grid points nearer to a sub-basin will be given more weight.  

Unique multivariate linear regression equations were established for each sub-

basin, variable (i.e. MAP or MAT), and 6-hour time step (see Clark and Hay, 2004, for 

more details). These equations are based on the seven MRF variables from the three 

nearest consecutive 12-hour MRF time steps. For example the MRF data valid on 12Z 
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Feb 24, 0Z Feb 25, and 12Z Feb 25 were used to predict the 0-6Z MAT on Feb 25. This 

gives 21 predictors (7 variables at 3 time steps) for each MAT or MAP. Regression 

equations are developed using a forward-screening approach (Clark and Hay, 2004). The 

coefficients are determined by training the regression equations on a subset of the data 

(i.e. 1980-1985) and validated on the remainder of the data. During the validation process 

a residual term (i.e. the difference between observed and predicted) is computed. The 

standard deviation of the residuals is computed for each 6-hour period, variable (i.e. 

MAT or MAP), and basin and saved for subsequent ensemble creation. 

 Ensemble traces are generated by stochastically modeling the error in the 

regression models: 

 

ε+= yyiens ˆ                                                                                                   (1) 

 

Where ŷ  is the value predicted from the multivariate linear regression, and ε is a random 

number extracted from a normal distribution with mean of zero and standard deviation 

equal to the standard deviation of the regression residuals ( ),0( eN σ , computed above).  

To create ensemble forecasts of MAT and MAP values for input into ESP, this equation 

is applied as many times as the number of ensemble traces are desired. For example, if 26 

ensemble traces are desired, 26 random numbers are chosen yielding 26 predicted MATs 

(or MAPs). Note these predictions have no coherence between time steps, variables, or 

basins.  

 For MAPs a logical regression is done prior to determining the amount of 

precipitation to determine the occurrence of precipitation. If precipitation is chosen to 
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occur the amount is computed as the MAT value would be computed. If not, the amount 

is zero and the predicted MAP value is ignored. 

Coherence is added through the ‘Schaake Shuffle’ as described in Clark et al. 

2004. The Shuffle essentially integrates the coherence in the historical record into the 

forecast ensemble. The historical precipitation and temperature is sorted from lowest to 

highest.  The precipitation and temperature forecast ensemble members are also sorted 

from lowest to highest.  The precipitation and temperature series are sorted separately. 

The sorted historical data is replaced with the sorted ensemble forecasts, and then re-

sorted by (historical) year.  For example, if the first year in the historical time series (say 

1979) had the fifth highest precipitation and the 20th highest temperature, then the first 

ensemble member would be the ensemble with the fifth highest precipitation and the 20th 

highest temperature.  This preserves the observed correlation between precipitation and 

temperature for the ensemble members (Clark et al., 2004a). The downscaling process 

results in ensembles of MAT and MAP values for each sub-basin, forecast initialization 

time between January 1, 1979 and December 31, 1998, and forecast six hourly lead time 

(up to 14 days). The variance of these ensembles reflects the observed forecast error in 

the downscaling process as well as the model error  

Figure 3 and Figure 4 shows the skill scores for the MATs and MAPs derived 

from this method as a function of forecast lead-time. MAT skill scores show substantial 

improvement (up to 0.7) over climatological MATs during the first week. The second 

week shows only minimal improvement over climatology. RPSS values are greater for 

January than for July MATs for all lead times where positive RPSS values exist. As 

expected the MATs  show much higher skill than do the MAPs. MAP skill scores show 
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only slight improvement (0.2) for the first 3-4 days after which no skill is added to the 

climatological MAPs.  

 

2.4 ESP Reforecasts 

The ESP component of the NWS hydrologic model (NWSRFS) was used to 

create reforecasts of the historical streamflow record (Day, 1985). The reforecasting 

methodology is depicted graphically in Figure 5.  First, historical MAT and MAPs were 

used as input to the NWSRFS to create a simulated record of historical streamflow and 

model states for the period 1979-1998 (Figure 5). The model state is defined by the 

physical states shown in Table 1. Simulated hydrologic model states were saved for every 

day in the historical record. Next, for each reforecast in the historical record, the 

NWSRFS was initialized using the simulated model states, and the NWSRFS run forward 

in time using the downscaled MAP and MAT as input (Figure 5).  For comparison, the 

experiment depicted in Figure 5 is repeated using historical MAP/MAT data in place of 

the downscaled ensemble inputs—for example, ensemble inputs to the NWSRFS from 

May 1st-May 15th 1981 are comprised of historical data from May 1st-May 15th 1979, 

1980, 1982, 1983, …, 1998 (this is the traditional implementation of the ESP approach 

for longer forecast lead times; Day, 1985).  To assess potential lagged effects of 

(potentially improved) inputs, the downscaled inputs are blended with the historical 

ensemble inputs on the 14th forecasted day, and all forecasts are run out to 25 days. In the 

blending period (day 14), the historical ensemble is linearly given more weight than the 

MRF ensemble. 
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Both sets of ESP reforecasts were made once each day between January 1 and 

July 31 for 1979 through 1999. Whereas the CDC MRF reforecasts were made every 12 

hours, ESP reforecasts may only be made once per day initializing at 0 UTC. A six hour 

time step was used in ESP. 

Traditional ESP forecasts weight the ESP ensemble member resulting from each 

year’s historical observations equal to every other ESP ensemble member. In doing so, 

predictability is derived mostly by knowledge of the initial hydrologic states rather than 

from a forecast of weather or climate conditions. By using the traditional ESP forecast as 

a benchmark for comparison, we can assess the additional predictability that is obtained 

by including downscaled MRF forecast information. 

 

3. Results 

 We assume a perferct hydrologic model for purposes of forecast verification.  

Here forecasts were verified against the simulated flow time series instead of the 

observed flow time series.  This focuses attention on improvements due to the inclusion 

of meteorological forecast information instead of errors in the hydrologic model itself.  

Simulated and observed flows are plotted in Figure 6 for DIRC2. Their difference is 

typically an order of magnitude less than the flow value indicating the simulation is very 

near the observation in that headwater basin. Outside of small headwater basins such as 

DIRC2, water regulation and diversions are widespread and sometimes large in 

magnitude meaning that the perfect model assumption is necessary for forecast 

evaluation. 
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Traditional forecast verification statistics such as mean absolute error (MAE) and 

mean squared error (MSE) may be used for individual elements of a forecast ensemble. 

The mean and variance of these statistics will allow for rudimentary comparisons 

between different ensemble forecast systems. However, these statistics do not assess 

probabilistic forecast skill. The RPSS will be used to assess probabilistic forecast skill. 

Here, instead of using climatology as the reference forecast, we use the traditional ESP 

method (Section 2.3; Day, 1985).   

Verification results are presented primarily for a headwater basin, inflow into 

Dillon reservoir, (Station Identifier: DIRC2) and for the most downstream basin in the 

study area, the Colorado River at Cameo, CAMC2. DIRC2 is a headwater basin with 

minimal water diversions and/or regulations. Other headwater basins show results similar 

to DIRC2. By contrast, CAMC2 is the most downstream segment in the study area and 

includes water routed from all the other segments. CAMC2 also includes many water 

diversions and regulations. In order to compensate for this simulated flow was used as the 

basis for forecast verification.   

 

3.1 DIRC2 

 Figure 7 and Figure 8 show the MAE and MSE averaged over all forecasts 

between April and July as a function of forecast lead-time. Both MRF and historical 

reforecasts show increasing error with increasing lead-time. For lead times up to 16 days 

the MRF reforecast has lower MSE and MAE values than for historical. After 16 days the 

errors are essentially the same. Forecast error reduction on the order of 10% is shown for 

forecast lead times of 1 to 9 days. These traditional measures give confidence that the 
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MRF does in fact add value to the reforecasts. The value added will be further quantified 

through probabilistic forecast verification measures. 

 Figure 9 shows RPSS values (MRF against historical) as a function of forecast 

lead and initialization times for each reforecasted year. The hydrograph for each year is 

superimposed. In general, forecast skill improvements on the order of 40% are present 

during rises in the hydrograph. For example, 1996 shows a maximum RPSS value of 

about 60% in late May for forecast lead times of 10-15 days. This coincides with the final 

portion of the rising limb of the hydrograph suggesting the MRF reforecast added 

significant information about precipitation, or more likely, temperature. Other years, 

notably 1988 and 1994 showed some negative RPSS values near the peak flow. In 1988, 

RPSS values less than 1.0 are present for lead times around 10 days near the mid-June 

peak flow indicating a probable incorrect MRF forecast. 

 Figure 10 shows the climatological hydrograph and the mean RPSS values as a 

function of forecast lead and initialization times. Positive values are present throughout 

the entire domain with the exception of lead times greater than 8 days after about mid 

July. RPSS values of 20% – 40% are shown during the rising limb of the hydrograph for 

the duration of the MRF model run (14 days). This result indicates substantial and 

consistent improvements in forecast skill when the forecast is most important – before the 

peak flow occurs. 

 

3.2 CAMC2 

 As was done for DIRC2, traditional forecast verification measures are applied to 

individual ensemble members.  Figure 11 and Figure 12 shows the forecast MAE and 
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MSE averaged over all forecasts between April and July as a function of lead-time. As 

with DIRC2, the MRF reforecast error is less than historical reforecast error up through 

lead times of 16 days. After that, the forecast errors are nearly equivalent. This gives 

confidence that the MRF does in fact add value to the reforecasts.  

 Figure 13 shows RPSS values for individual years. A 10-day running mean was 

applied to the forecast initialization date. Generally positive RPSS values are present 

during the rising limb of the hydrograph for all years and for all forecast lead times. Most 

years show a maximum RPSS value near 0.5 indicating a 50% improvement over the 

historical forecast. These maximum RPSS values generally occur near lead times of 

about one week as well as near the seasonal peak flow. Negative RPSS values exist for 

most years, particularly during the falling limb of the hydrograph although for smaller 

areas than the positive values. Seasonal variations in RPSS may reflect cases when the 

forecast is most sensitive to temperature variations. Strong warming during the rising 

limb of the hydrograph will cause snow melt which will increase the rate of rise—the 

increased skill in the rising limb is likely because temperature forecasts have higher skill 

than precipitation forecasts (Figures 3 and 4).  Several years show substantial increases in 

forecast skill score out to three weeks. 

 Figure 14 shows the mean forecast RPSS for CAMC2 over all reforecast years as 

a function of forecast lead-time and forecast initialization date. A 10 day running mean 

was applied to the forecast initialization times for all forecast lead times. The mean RPSS 

value during April – July forecast period over forecast lead times up to 21 days is 12%. 

Strong forecast improvements are present during the entire rising limb of the hydrograph 

between mid April and early June. Maximum RPSS values are about 0.4 and 
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predominately occur at lead times of 3-6 days during the rising limb. Beyond 18 days, 

RPSS values are near zero indicating, on average, there is no forecast improvement 

beyond 18 days.  

 RPSS values were sorted according to the daily change in flow and plotted in 

Figure 15. It is apparent from this figure that forecast skill is improved more strongly for 

situations where the daily flow is increasing from one day to the next. This again suggests 

the hydrologic states are sensitive to periods where temperatures are warmer than 

climatology in that the MRF is generally capable of forecasting with a one to two week 

lead time. 

 

4. Summary and Conclusions 

 The forecast skill improvements shown here through RPSS values are substantial. 

However, the RPS values were calculated against simulated flow rather than observed 

flow. Lower forecast skill should be expected when the RPSS is calculated against the 

observed flow and when the hydrologic model error is taken into account.  

The current operational use of ESP does account for meteorological forecasts 

through the inclusion of deterministic temperature (days 1-10) and precipitation forecasts 

(days 1-3). It is hypothesized that the MRF ESP forecasts presented in this study may 

have a higher skill than the operational ESP forecasts due to the inclusion of probabilistic 

information. However, an historical archive of the deterministic station forecasts used in 

the operational ESP forecasts would be necessary to quantify the forecast skill of the 

operational ESP. Since the meteorological forecasts used in the operational ESP are 

based on the dynamic NCEP MRF and human derived precipitation forecasts, such an 
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archive of suitable length of record does not currently exist. A comparison of the 

operational ESP to the MRF ESP presented in this study will be addressed in a future 

study. 

The increase in forecast skill due to the inclusion of the MRF forecast is 

encouraging. In 2004, CBRFC will have the capability to extend and use this method for 

any of its basins on a once per day operational basis. Similar methods may be applicable 

for other finer resolution numerical weather models (i.e. the meso-eta) which may lead to 

an increase in forecast skill for shorter lead times. 
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Table 1: NWSRFS hydrologic model states saved to initialize ESP reforecasts. 

UZTWC Upper zone tension water 

UZFWC Upper zone free water 

LZTWC Lower zone tension water 

LZFPC Lower zone primary free water 

LZFSC Lower zone supplemental free 

ADIMC Additional impervious contents 

SNOW Snow model states 
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Figure 1: Schematic of daily process conducted at CBRFC to integrate meteorological information 
from MRF model into river forecasts. 
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CBRFC STUDY BASINS 

 

Figure 2: CBRFC basins included in the study area. CAMC2 includes all white and red basins. 
DIRC2 is the red basin. 
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Figure 3: RPSS values for MRF derived Mean Areal Temperatures for January and July as a 
function of lead-time and forecast period. 
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Figure 4: RPSS values for MRF derived Mean Areal Precipitation for January and July as a function 
of lead-time and forecast period. 
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Figure 5: Schematic representation ESP reforecast construction from hypothetical MAT and MAPs.  
Reforecasts here are made for May 1 between 1980 and 1984.  
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Figure 6: Observed flows, simulated flows, and their difference for DIRC2. 
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Figure 7: Historical and MRF ESP forecast Mean Absolute Error (MAE) for DIRC2. MAE is shown 
as function of forecast lead-time for all forecasts initialized between April and July. Median, extreme, 
and quartile values are shown. 
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Figure 8: Historical and MRF ESP forecast Squared Error (MSE) for DIRC2. MSE is shown as 
function of forecast lead time for all forecasts initialized between April and July. Median, extreme, 
and quartile values are shown. 
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Figure 9: DIRC2 MRF forecast RPSS by year. Forecast initialization time is on the x-axis and 
forecast lead-time is on the y-axis. A ten-day running mean has been applied to the forecast 
intialization times. Superimposed black curves are the simulated flow for each year. 
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Figure 10: DIRC2 MRF forecast mean RPSS over all reforecast years.  Lead-time (days) is displayed 
on the Y-axis and forecast intialization is displayed on the X-axis. A 10-day running mean has been 
applied. Superimposed black curve is the climatological simulated flow. 
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Figure 11: Historical and MRF ESP forecast Mean Absolute Error (MAE) for CAMC2. MAE is 
shown as function of forecast lead-time for all forecasts initialized between April and July. Median, 
extreme, and quartile values are shown. 
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Figure 12: Historical and MRF ESP forecast Squared Error (MSE) for CAMC2. MSE is shown as 
function of forecast lead-time for all forecasts initialized between April and July. Median, extreme, 
and quartile values are shown. 
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Figure 13: CAMC2 MRF forecast RPSS by year. Forecast initialization time is on the x-axis and 
forecast lead-time is on the y-axis. A ten-day running mean has been applied to the forecast 
intialization times. Superimposed black curves are the simulated flow for each year. 
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Figure 14: CAMC2 MRF forecast mean RPSS over all reforecast years.  Lead-time (days) is 
displayed on the Y-axis and forecast intialization is displayed on the X-axis. A 10-day running mean 
has been applied. Superimposed black curve is the climatological simulated flow. 
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Figure 15: RPSS values sorted and averaged according to the daily difference in simulated flow. 
Positive flow differences indicate a rising hydrograph while negative differences indicate a receding 
hydrograph.  


