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ABSTRACT

Managing water resources generally and managing reservoir operations specifically have been touted

as opportunities for applying forecasts to improve decision making. Previous studies have shown that the

application of forecasts into water management is not pervasive. This study uses a scenario-based approach to

explore whether and how people implement forecast information into reservoir operations decisions in

a workshop setting. Although it was found that participants do utilize both forecast and observed information,

they generally do not utilize probabilistic forecast information in a manner to appropriately minimize risks

associated with the tail end of the forecast distribution. This study found strong tendencies for participants to

wait for observed information, as opposed to forecast information, beforemaking decisions. In addition, study

participants tended to make decisions based on median forecast values instead of considering forecast

probability. These findings support the development of quantitative decision support systems to optimally

utilize probabilistic forecasts as well as for forecast agencies such as NOAA/NWS to continue investments in

work to better understand contexts and environments where forecasts are used or have the potential for use in

supporting water management decisions.

1. Introduction

Many factors influence water management decisions

including political pressures, legal and policy constraints,

infrastructure, and natural and managed water supply.

The use of science and/or forecasts in informing water

management decisions is often stymied by other con-

siderations including these factors unrelated to science

and/or forecasts as well as lack of knowledge or back-

ground in the science (Beller-Simms et al. 2008; Rayner

et al. 2005). Previous research suggests that forecasts are

not used frequently and that forecast usage, when it does

occur, is not driven by improvements to forecast skill or

enhancements to forecast services (O’Connor et al.

2005). Thus, there appears to be a significant and im-

portant gap between forecasts being produced and their

actual or potential use by water management agencies.

This study primarily aims to examine how water man-

agers interpret and use probabilistic streamflow fore-

casts, which provide a probability distribution describing

the likelihood of future runoff.

Forecast agencies such as the National Oceanic

and Atmospheric Administration’s National Weather

Service (NOAA/NWS) continue to make significant

investments in improving streamflow forecast capabil-

ities and skill, often with the goal of improving forecast

decision support for water management (Raff et al.

2012). While these types of investments have often

resulted in improved forecast skill and enhanced fore-

cast services (such as more forecast points or more

frequent updates), it is much less clear how or if they are

translated through to improvements to water manage-

ment decision making.
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In particular, NOAA/NWS has invested in developing

ensemble streamflow forecasts including improved fore-

cast methods (Day 1985; Schaake et al. 2007; Werner

et al. 2005) and forecast verification (Brown et al. 2010;

Demargne et al. 2010). These improvements have di-

rectly led to new probabilistic forecast services, more

frequent forecast issuances, and possibly more skillful

forecasts.However, both the literature reviewed here and

NOAA/NWS experience has shown that only rarely have

the improved forecasts translated into improved decision

making or even greater forecast utilization by water

management agencies.

Application of forecasts to water management de-

cisions varies widely from agencies that seldom or never

use forecasts to those that routinely utilize forecasts.

Among agencies that explicitly utilize forecasts, appli-

cations range from subjective consideration of forecast

information to objective utilization of forecast elements

including the median forecast or a range of the forecast

distribution. An increasingly common forecast applica-

tion is to formally tie an operational decision to a median

forecast value. An example of this is the coordinated

operations guidelines for Lakes Powell and Mead on the

Colorado River (USBR 2007). These guidelines set de-

cisions related to interstate water allocation and reservoir

operations to the median forecasted inflow volumes.

Unfortunately this approach does not consider the range

represented by the forecast distribution, which leads to

large uncertainties when a forecast distribution straddles

important threshold values. A less common but more

rigorous approach is to consider the forecast distribution

explicitly and objectively. Denver Water developed a ca-

pability to do this through incorporation of ensemble

forecast time series into the spreadsheet model that in-

dividually considers each ensemble time series relative to

their threshold values allowing the operator to minimize

their risk of exceeding those thresholds (R. Steger 2012,

personal communication). While this approach is desir-

able in that allows the operator to objectively manage

their risks based on probabilistic forecasts, application of

such systems remains rare.

This study examines how water managers and fore-

casters behave when presented with probabilistic fore-

casts and given the opportunity to apply those forecasts in

a reservoir management decision-making environment.

Through our scenario approach, we explore two ques-

tions: 1) To what degree do participants use streamflow

forecasts to make reservoir management decisions? 2)

How effectively do participants use the probabilistic in-

formation in the runoff forecasts to manage risk? Using

results from a reservoir management scenario exercise,

this paper will describe our study of how users apply

probabilistic inflow forecasts to a simplified management

scenario. We begin by presenting a literature review,

followed by an explanation of our research design. Fi-

nally, we discuss results from and conclusions of our

work.

2. Literature review

While the body of research on the use of forecasts in

managing water resources is relatively young in its own

right, it draws on diverse research from other disciplines

including economics and public administration. One of

the original uses proposed for seasonal climate forecasts

was as a decision support tool for managing water re-

sources (Glantz 1996). Through the use of forecasts

water managers would be able to hedge their reservoir

operations in order to, for example, hold more water

back in years with dry forecasts to increase chances of

filling reservoirs. Similarly, using climate forecasts to

optimize water management has been suggested as an

important practice for reducing risk in the face of cli-

mate change (Ludwig 2012).

However, a collection of mostly interview-based

studied has shown that water management agencies are

largely unwilling or unable to adopt forecasts into their

operations (Lemos 2008; Pulwarty and Redmond 1997;

Rayner et al. 2005). For example, Rayner et al. (2005)

identified institutional constraints and priorities as the

major factors limiting the adoption of climate forecasts

in water management agencies in the Pacific Northwest,

Southern California, and the Washington, DC, metro-

politan areas of the United States. Using a semi-

structured, snowballing interview approach, they found

that water management agencies of various sizes and in

all three regions valued delivery reliability and water

quality above all other considerations. Respondents

indicated that failure to deliver water was simply not

tolerated by the agencies, their elected officials, or the

public that they serve. Similarly, water delivered must

always be of sufficient quality to meet the end use. Al-

though cost was frequently an important consideration,

it played a much less significant role than reliability and

quality. With the emphasis on reliability and quality, the

water management agencies studied were resistant to

adapt new technologies to lower costs if there was any

potential increase in risk of failure to deliver reliability

and quality.

In 2000, researchers working in South Carolina and

Pennsylvania’s Susquehanna River basin conducted a

large-scale survey designed to assess respondents’ 1) size

of water management responsibilities, 2) perception of

their own risk, and 3) perception of forecast skill for

both weather and climate forecasts (Dow et al. 2007;

O’Connor et al. 2005). The survey populations were
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substantial in both study areas (n5 405 in Pennsylvania

and 269 in South Carolina), allowing for significant sta-

tistical analysis of the results (O’Connor et al. 2005). The

results showed that only small percentages of re-

spondents reported use of climate and/or weather fore-

casts formost purposes in both states. Only 10%–25%of

respondents reported usage of forecasts for planning

future water storage needs, expanding distribution sys-

tems, adjusting reservoir levels, adjusting inventory

supply needs, and similar uses. By contrast, however,

managers were more likely to use forecast information

for two other purposes: scheduling personnel for main-

tenance and construction and starting public information

campaigns to conservewater.Analysis of survey data also

produced another interesting result: perception of risk

significantly correlated with respondents’ willingness to

use forecasts in decision making. In other words, if

a particular agency were at some risk of not meeting its

delivery or quality requirements, it would be willing to

seek new information that it otherwise would not be

willing to use. On the other hand, the analysis found that

agency size and perception of forecast skill did not cor-

relate well with actual use of or willingness to use climate

forecasts. Therefore, forecast usage is more determined

by perception of risk and recent experiences with ob-

served weather and climate than by any improvements in

forecast skill or the potential value of the forecasts to the

end user.

Previous research has also examined the difficulties in

communicating probabilistic forecasts both to fore-

casters (Demeritt et al. 2010) and to forecast consumers

(Ramos et al. 2010). These studies document the diffi-

culty in communicating probabilistic forecasts. Demeritt

et al. (2010), for example, interviewed operational river

forecasters on their use and perceptions of probabilistic

forecasts in Europe. They found many forecasters were

skeptical of the ability of forecast users to understand

the uncertainty expressed in the probabilistic forecasts.

Many forecasters also expressed skepticism themselves

with the meaning of the uncertainty estimates produced

by the forecast models. Economists such as Daniel

Kahneman have similarly noted that as humans ‘‘we

easily think associatively, we think metaphorically, we

think causally, but statistics requires thinking about

many things at once’’ (Kahneman 2011, p. 13). Better

understanding how forecast consumers understand and

potentially use probabilistic forecasts is clearly impor-

tant in this study.

Summarizing the state of practice for application of

seasonal to interannual forecasts in water resources

management, Beller-Simms et al. (2008) noted the tra-

ditional ‘‘loading dock’’ model in which forecasts are

produced and placed on a loading dock for consumers to

use has not effectively promoted forecast usage. Instead

of a loading dock model, Beller-Simms et al. (2008) and

others note the importance of improving our collective

understanding of how forecasts in particular and science

more generally can be effectively applied to decision

making in a collaborative manner that includes the

forecast/science producer. Other studies (e.g., Feldman

and Ingram 2009) have similarly examined the applica-

tion of science to water resources management decision

making and have concluded that more emphasis should

be placed on employing social science methods to un-

derstanding and improving that process.

One common element from previous studies is that

rational choice theory does not appear to apply. Rational

choice theory, sometimes called rational-comprehensive,

requires that all options be systematically studied before

decisions are made at every time step relevant to the

decision-making unit (Lindblom 1959). Rayner et al.

(2005) explicitly described and addressed rational

choice theory as it applies to using forecasts. The early

optimism from the climate research and forecasting

communities was essentially based on rational choice

theory whereby decision makers would be strongly mo-

tivated by an interest to optimize performance through

the application of all available and relevant information

to the required decision (Glantz 1996). Under rational

choice theory, water management agencies would con-

tinually search out and apply new information and new

forecasts. New information sources would be analyzed and

weighted according to their value such that forecasts—

even those with considerable uncertainty—could be le-

veraged into improving the decision-making process

incrementally. However, as virtually all the previous

studies have found, water management agencies do not

do this. These results are consistent with examples from

other areas of public administration showing that rational

choice theory is rarely adhered to in real-world decision

making (Lindblom 1959; Simon 1946; Wildavsky 1969).

Instead, as Simon (1946) and others have described, de-

cision makers more typically rely on a combination of

previous experience, political considerations, and con-

sider incremental changes to the status quo based on their

organizational limitations, time availability, and other

practical considerations.

Another common thread to previous research was

that forecast usage, when it did occur, was largely mo-

tivated by the perception of risk to climate or weather on

meeting water delivery requirements or water quality

standards. O’Connor et al. (2005) documented this ex-

plicitly through their survey results. Rayner et al. (2005)

speculated that water shortages or long-term drought

could cause agencies to seek out new information

sources such as climate forecasts. Water management
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agencies that do not perceive a risk from future climate

or weather are very unlikely to seek out forecasts to

integrate into their operations.

3. Method

This study utilizes a scenario-based research design to

understand how reservoir managers and forecast pro-

viders interact with probabilistic forecasts of reservoir

inflow to make operational decisions managing a reser-

voir. We were interested in exploring two questions: 1)

To what degree would participants use streamflow

forecasts to make reservoir management decisions? 2)

How effectively participants would use the probabilistic

information in the runoff forecasts to manage risk? We

developed two reservoir operations scenarios that pre-

scribed operations risks through reservoir capacity and

monthly release constraints with the goal of keeping the

reservoir as full as possible. We simulated time by alter-

nately providing probabilistic monthly inflow forecasts

and actual inflow volumes iteratively through a runoff

period. By comparing participant release schedules with

historical median inflows and forecasted inflows, we are

able to qualitatively assess the extent towhich participants

relied on forecasts in their decision making and, in par-

ticular, using probabilistic forecasts to inform reservoir

management.While our data do not represent laboratory-

quality data, our quasi-experimental approach provides

a rare opportunity to explore improving the use of prob-

abilistic forecasts in reservoir management.

Our data come from three workshops conducted be-

tween January 2011 andNovember 2011. Theseworkshops

were intended primarily as educational opportunities for

forecast users and forecast providers. In all three instances

of the workshop, the scenario exercise was conducted as

part of a larger effort to inform forecast users of the

breadth of forecast information available. Other work-

shop topics included lectures explaining the science

behind ensemble streamflow forecasts and the weather

and climate forecasts that support the streamflow fore-

casts, forecast verification results to provide context on

forecast skill, and usability exercises on NOAA/NWS

websites where forecasts and other information may be

obtained. Participants were largely self-selecting based

on their interest in learning more about forecast

methods and applications. Given both the context of the

workshops and the self-selection nature of participation,

we expect that the rate of forecast usage in our scenario

exercise should be greater than in the real world.

In total there were 60 participants in three workshops.

Of those, 51 participants completed the scenario exer-

cise whose results are reported here. The workshops

themselves were conducted in different environments

and attracted different types of participants. The first

workshop in January 2011 was a short course held in

conjunction with the American Meteorological Society

annual meeting. The second workshop in August 2011

was targeted toward water managers in the state of Utah

and followed an anomalously large runoff year. The

third workshop in November 2011 was part of a NOAA/

NWS training course and attracted mostly forecast

providers. Demographic information including pro-

fessional affiliation, geographic area, and experience

with forecasting and/or water management were col-

lected from each participant for the first two workshops

but not the third where the format of the workshop

precluded the collection of this information. This in-

formation was used to assess correlations with successful

forecast usage and relevant work experience. Examining

both proposed and actual reservoir releases relative to

the historical averages and capacity of the reservoir

assessed forecast usage.

The exercise scenarios were developed to simulate

decision making in reservoir operations. Participants

were presented with reservoir management scenarios

and a series of forecasts describing probability functions

for monthly runoff volumes for a mountain basin whose

runoff is dominated by snowmelt. At the beginning of

the exercise, participants were told that their ‘‘job’’ was

to fill the reservoir as much as possible by the end of the

runoff season without exceeding monthly minimum and

maximum release constraints. An inexpensive prize was

offered as an incentive to the participant who had the

highest reservoir at the end of the runoff season without

exceeding themaximumorminimum release constraints

in the exercise or overtopping the reservoir. Participants

were only allowed to set monthly releases within a pre-

scribed range meant to reflect minimum instream flow

requirements on the low end and flooding mitigation on

the high end. The range of releases allowed in the exercise

was 15 KAF to 60 KAF month21 (1 KAF 5 1000 acre-

feet). In addition, participants that exceeded the capacity

of the reservoir (500 KAF) at the end of any month were

excluded from consideration from the winning incentive.

At the beginning of the exercise, participants were

provided with the 1March reservoir state, a probabilistic

forecast of monthly volumes extending into the summer

months, and the historical average inflows for each

month and the operation constraints for the reservoir

(e.g., minimum and maximum releases). Reservoir vol-

umes are provided and tracked in units of KAF and

presented using a series of box-and-whisker plots similar

to those shown in Fig. 1. These conventions were chosen

specifically to match the forecast paradigm adopted by

NOAA’s experimental water resources outlook as de-

scribed byBeller-Simms et al. (2008) and outlined on the
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NOAA water resources outlook (e.g., wateroutlook.

nwrfc.noaa.gov). Both a description of and a hands on

opportunity to use the water resources outlook website

was included as part of all three workshops as well. The

1 March reservoir state provided was 40 KAF. Partic-

ipants were asked to provide their monthly release

schedule. Each participant would then be given the

actual inflow for March. From this, participants would

calculate the 1 April reservoir contents using a simple

water balance equation:

Sj 5 Si 1Qin 2Qout ,

FIG. 1. Monthly inflow forecasts for scenarios (a) A and (b) B illustrating forecast information

as presented to participants. The box-and-whisker plots depict the forecast probability for

monthly inflows. The green line is the observed inflow. Figures reprinted with permission from

NOAA.
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where, for any month i, S is the reservoir storage, Qin is

the monthly inflow volume, and Qout is the monthly

release volume. After calculating their new reservoir

content for each simulated month, participants were

given an updated forecast from that month forward for

the remainder of the runoff season and asked to update

their release schedule accordingly. The exercise con-

tinued in this manner through the end of July at which

point the ‘‘winner’’ was determined by comparing the

participants’ final reservoir levels among those that did

not exceed the release constraints.

The scenarios themselves were chosen to demonstrate

cases where the observed inflows were near the tail of

the forecast probability distribution in order to test our

second goal (e.g., how effectively do participants man-

age risk in a probabilistic forecast environment). The

scenarios were based on the actual forecasts and inflows

for Lake Granby, Colorado, in 2010 (scenario A) and

2007 (scenario B). Minor modifications such as rounding

were made to the actual forecasts and data for those

years to simplify the math required in the actual exer-

cise. Figure 1 shows the 1 March forecasts and corre-

sponding observed inflow volumes for both scenarios. A

cool, wet May in 2010 contributed to observed inflows at

the high end of the forecast distribution whereas a dry

spring in 2007 contributed to observed inflows at the low

end of the forecast distribution in that year. In 2010, not

only were the inflows at the high end of the forecast

distribution, but they were also somewhat late in mate-

rializing. June 2010 experienced the largest inflows and

these were at the very highest end of the forecast dis-

tribution. Thus, the reservoir operation challenge for

scenario A was to recognize the possibility of the high

end of the forecast distribution actually occurring in

the reservoir release schedule. Scenario A presented

a significantly more challenging reservoir management

situation in which we expected to see more variance in

the results developed by participants. Therefore, we

assigned roughly twice asmany participants to scenarioA

than to scenario B. Participants were assigned to sce-

narios without regard to any other characteristic; 35

participants completed scenario A while 16 completed

scenario B.

The format of the scenario exercise was largely con-

sistent between workshops with two exceptions. First,

based on input from the first workshop where partici-

pants requested historical contextual information about

the inflows, participants in the second two workshops

were provided with the historical median inflows. Sec-

ond, third workshop participants worked together in

teams of twowhereas theyworked individually in the first

two workshops. This change was intended to simulate

real-world decision making where reservoir operation

decision makers more commonly work in group settings

than individually. In all three workshops, participants

largely worked in isolation from the other participants.

The reward structure was also very similar between the

three workshops.

Given the study design, results are not generalizable

to all water managers. We do not claim representative-

ness or attempt to calculate statistical significance. Im-

portantly, participants in this exercise were specifically

asked to use forecasts and were intentionally not pro-

vided with the plethora of other contextual information

that surrounds water management decision making in

the real world. This factor together with the format and

design of the workshops, undoubtedly, led to a higher

rate of forecast usage than would be observed in the real

world. Participants were not randomly selected from the

larger population of forecast consumers and stake-

holders. Rather, they voluntarily chose to participate in

one of the three workshops. Because of the geographic

nature of the workshops, participants from the western

United States were overrepresented. Also, the snowmelt

nature of the exercise lends itself to people with experi-

ence in the western United States more so than other

regions. Nonetheless, the results from this study have

currency and relevance in improving understanding of

how people use probabilistic forecasts.

4. Results and discussion

This section analyzes both the initial release schedules

proposed by participants and the release schedule ac-

tually implemented by participants to assess their use of

forecasts. The analysis of the releases proposed and

implemented by the participants allows us to gain an

understanding of how participants are using the in-

formation provided to them in the scenario (including

forecasts) to make reservoir operations decisions.

Through comparisons over time, between groups of

participants, with climatological inflows, and with the

forecasted inflows, we are able to qualitatively assess

which information sources participants are most com-

monly using as well as how effective those information

sources are for the decision space within the scenario.

Actual reservoir contents at the end of each month

were calculated based on the participants’ actual releases

as part of the exercise. Figure 2 shows the reservoir

contents separately for all scenario A (Fig. 2a) and B

(Fig. 2b) participants.

For scenario A, only 5 out of 35 participants (14%)

were able to avoid overtopping the reservoir. This result

demonstrates that most participants did not plan for the

worst-case scenario or even a high extreme scenario

within the forecast distribution. Instead, most participants
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in the exercise took a ‘‘wait and see’’ approach toward

responding to extreme forecasts. Rather than a robust

consideration of available data, most participants in-

stead relied on small subset. Once high inflows became

apparent in May, most participants were not able to

evacuate sufficient space from their reservoir to contain

the very high inflows in June. This observed tendency in

the exercise is also apparent in many water management

practices that prescribe management actions only for

water on the ground or in the channel rather than based

on forecasted flows (Raff et al. 2012).

In scenario B (Fig. 2b), none of the participants

overtopped their reservoir. Interestingly, by May in this

scenario, the participants had formed distinct groups.

One group drew the reservoir down early in the exercise

(e.g., March and April releases were large) while the

other group held their reservoirs at about the same level

as the start of the exercise. Our demographic data show

that the former group was composed of participants with

reservoirmanagement experiencewhile the second group

was not, suggesting the importance of reservoir opera-

tion experience. Unfortunately, we were limited by our

demographic data that only coarsely described our par-

ticipants and the overall sample size in further pursuing

how participant background influenced their choices in

the scenario exercise. Clearly this is a fertile ground for

further investigation.

Next we compare participants’ proposed reservoir

operation at the start of the exercise to their implemented

operation at the end of the exercise. Table 1 reports

number of participants proposing and implementing

sufficient releases to avoid overtopping the reservoir for

each scenario. In both scenarios, the number of partici-

pants implementing sufficient releases is greater than the

number of participants initially proposing sufficient re-

leases. This indicates that at least some participants adapt

their plans as new information becomes available through

the course of the exercise. Given that the vast majority of

participants in scenario A were not able to modify their

plans sufficiently to avoid overtopping and that the inflow

forecasts did not change dramatically, this result suggests

that participants were more likely modifying their plans

based on actual inflows reported rather than on changing

forecasts.

Release schedules were compared with historical

median inflows and with forecasted inflows to assess the

extent to which participants hedged risk or followed

historical or forecasted inflows. Figure 3 shows the total

March through July seasonal reservoir releases initially

proposed by each participant. In the exercise (as would be

the case in the realworld), participantswere free to change

their future schedules as simulated time advanced and

they were given new information (e.g., revised monthly

forecasts and actual inflows). Proposed seasonal releases

are plotted together with the excess forecasted inflow,

actual excess inflow, and historical median excess inflow.

Excess inflow is calculated by subtracting the beginning

available reservoir storage capacity (40 KAF) from the

inflow value.

For scenario A, the actual excess inflow was 62 KAF

more than the median forecast but 125 KAF less than

the 10% forecast. Reservoir release plans with volumes

FIG. 2. Monthly reservoir storage amounts for scenario (a) A and

(b) B participants. The red line in (a) indicates the top of the

reservoir.

TABLE 1. Participants (left) proposing and (right) implementing

sufficient total releases to avoid dam overtopping. Note that dam

may still overtop with sufficient total releases if release timing is

not optimal.

Number and percentage

of participants

proposing sufficient

releases

Number and percentage

of participants

implementing sufficient

releases

Scenario A

(n 5 35)

9 (26%) 14 (40%)

Scenario B

(n 5 16)

14 (88%) 16 (100%)
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less than the actual excess inflow would overtop the

reservoir. A majority of participants (22 of 35) in sce-

nario A proposed releases less than the actual excess

inflow in their 1 March plan. An additional five partici-

pants proposed releases that equaled the actual excess

inflow. The timing of the inflows relative to the proposed

releases would determine whether the participants that

proposed releases equal to or greater than the actual

excess inflow would overtop the dams. For example,

a participant with a total proposed release of 190 KAF

would release more water over the season than the

excess actual inflow. However, if the timing of the re-

leases was such that insufficient space was evacuated

from the reservoir to contain the 120 KAF of inflow in

June, their reservoir would still overtop.

While the majority of scenario A participants pro-

posed to release less than the actual excess inflow, all but

three participants (8.5%) proposed to release at least the

median forecasted excess inflow. Several participants

proposed scheduled releases nearly equal to the median

forecast. Fewer participants proposed releases nearly

equal to the historical median runoff. This indicates that

most participants were aware of and incorporated the

forecasted inflow and fewer participants accounted for

historical streamflow.

In scenario B the actual excess inflow (178 KAF) was

much less than the median forecast (274 KAF). In this

situation, all participants were able to avoid overtopping

their reservoirs. Interestingly, most participants initially

proposed releasing less water than the excess median

forecast value. Had the median forecast verified, these

participants would have overtopped their reservoirs.

One possible rationale for proposing releases less than

the median excess inflow forecast could be that partici-

pants were instead keying off themedian historical excess

inflow (160 KAF). Many of the participants proposed

initial releases near this historical median value. How-

ever, only participants in the second two workshops had

access to the historical data.

The results in Fig. 3 show a general tendency for

people to focus on the median forecast when presented

with a series of probabilistic forecasts, and the reliance

on historical data in decision making. The cluster of

proposed releases near the median forecasted excess

inflow demonstrates this tendency. However, at least in

the scenario A results, there was also some tendency for

people to hedge somewhat—albeit not enough in most

cases—either toward the higher end of the forecast

distribution given the incentive structure to not overtop

the damor toward utilizing the historical data. Instead of

following a 50% forecast they planned for the 40%

forecast even though thatmeant at least a 40% chance of

failure given the uncertainty associated with timing.

These results suggest that most participants are aware of

the need to hedge and will act on that awareness. This

observation is consistent with previous literature finding

that rather than a robust consideration of all available

data and forecasts (e.g., rational choice theory), partici-

pants instead commonly consider recent past experience

and simplified data (e.g., Lindblom 1959; Simon 1946).

Next, we analyze the distribution of participants’ im-

plemented (actual) releases. Figure 4 shows these distri-

butions following the same convention as Fig. 3. These

figures show that the range of implemented releases was

FIG. 3. Total releases in 1 March release schedules developed by

participants ranked from largest to smallest. Participants are color

coded by workshop, for scenarios (a) A and (b) B. Also included

are the seasonal inflow volume forecast (in red horizontal lines),

actual seasonal inflow (green), and historical median inflow (blue).

These reference lines account for the initial 40 KAF of space by

subtracting that value.
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narrower than the proposed releases for both scenarios

but especially so for scenario B. Consistent with the re-

sults in Table 1, these results show a tendency for par-

ticipants to adapt their plans to new information as the

exercise progressed. It also shows that the participants

tended to coalesce around similar solutions especially for

scenarioB. This later result is not terribly surprising given

the incentive to fill the reservoir and lower than fore-

casted volumes in scenario B.

Participants at the NWS training proposed and

implemented releases with less variance between partic-

ipants than those from the other twoworkshops. Thismay

have been the result of the exercise structure wherein

participants worked together in teams of two people in-

stead of independently as in the other two workshops.

These teams may have served to temper some of the

outlying release schedules that were submitted by par-

ticipants in the other two workshops.

Participants in the AMS course adapted their release

schedules in scenario A more significantly than in the

other two workshops. In their initial releases (Fig. 3a),

AMS course participants were represented throughout

the distribution of all participants. However, in their

actual releases (Fig. 4a), AMS course participants had

shifted within the total participant population such that

all AMS course participants were in the higher half

of the distribution. We speculate that these participants

benefited from material presented elsewhere in their

workshop that was not presented in the other two

workshops.

Our results suggest a potential application for objec-

tive decision support tools for utilizing complex and

uncertain information such as that employed by Denver

Water. The incentive structure in our study encouraged

participants to avoid overtopping their dams as a first

priority while filling to the maximum height possible as

a second priority. Incentive structures in the real world

are often much more complex. In both cases, there is

a clear role for both a human decision maker that can

intelligently respond to a decision support system that

effectively seeks to optimize possible action against

predetermined criteria as well as an objective tool that

utilizes probabilistic forecasts to minimize risk func-

tions while maximizing opportunity functions. The

scenario A results demonstrate the importance planning

for instances where the tail of the forecast distribution is

realized. Future work could employ a decision support

tool to demonstrate effective management techniques

that plan for the contingency realized in scenario A.

Those results could be used together with this exercise to

more rigorously test the use of decision support tools

but also to demonstrate their value to future exercise

participants.

Our study shows, consistent with previous work (e.g.,

O’Connor et al. 2005), that forecast agencies cannot

take for granted that forecasts are understood or applied

in the manner that forecast agencies intend. Second,

people generally do not consider the tails of a forecast

probability distribution in their decision making even in

cases such as our scenario where penalties for system

failure are extreme. In the real world, extreme events

that are often responsible for failing systems are often

represented in the tail ends of the forecast distribution.

One effective strategy for managing extreme events is

an appropriate consideration of the full forecast prob-

ability function as in the Denver Water capability

(Steger 2011). Finally, in order for forecast agencies to

maximize the value of their forecast products, they must

FIG. 4. Total implemented releases by participants ranked from

largest to smallest. Plotting conventions are as in Fig. 3.
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invest in partnerships with forecast users to collabora-

tively understand how forecasts are being used, address

misunderstandings, and look for opportunities for im-

provement. In the scenario presented in this case study,

for example, the forecast agency could have played an

important role in working with the reservoir operator to

understand the potential impact of realizing the high

end of the forecast distribution. Understanding and

supporting decision making in this context is an impor-

tant role for a forecast agency to play.

More work is needed to demonstrate the value of

decision support systems in decision-making contexts

similar to that used in our exercise is needed. While

water management agencies are increasingly relying

on ensemble streamflow forecasts and calling for im-

provements in forecast skill and reliability, more work is

needed to fully understand the value that a decision

support system can add. Ultimately human operators

and decision makers will continue to play important

roles in water management. Understanding how to most

effectively leverage science and forecasts into that con-

text is important component of improving resiliency and

reliability of our water management infrastructure.
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