
1076 VOLUME 5J O U R N A L O F H Y D R O M E T E O R O L O G Y

q 2004 American Meteorological Society

Climate Index Weighting Schemes for NWS ESP-Based Seasonal Volume Forecasts

KEVIN WERNER AND DAVID BRANDON

Colorado Basin River Forecast Center, Salt Lake City, Utah

MARTYN CLARK

Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

SUBHRENDU GANGOPADHYAY

Cooperative Institute for Research in Environmental Sciences, and Department of Civil, Environmental, and Architectural Engineering,
University of Colorado, Boulder, Colorado

(Manuscript received 9 January 2004, in final form 26 April 2004)

ABSTRACT

This study compares methods to incorporate climate information into the National Weather Service River
Forecast System (NWSRFS). Three small-to-medium river subbasins following roughly along a longitude in the
Colorado River basin with different El Niño–Southern Oscillation signals were chosen as test basins. Historical
ensemble forecasts of the spring runoff for each basin were generated using modeled hydrologic states and
historical precipitation and temperature observations using the Ensemble Streamflow Prediction (ESP) component
of the NWSRFS.

Two general methods for using a climate index (e.g., Niño-3.4) are presented. The first method, post-ESP,
uses the climate index to weight ensemble members from ESP. Four different post-ESP weighting schemes are
presented. The second method, preadjustment, uses the climate index to modify the temperature and precipitation
ensembles used in ESP. Two preadjustment methods are presented. This study shows the distance-sensitive
nearest-neighbor post-ESP to be superior to the other post-ESP weighting schemes. Further, for the basins studied,
forecasts based on post-ESP techniques outperformed those based on preadjustment techniques.

1. Introduction and background

Ensemble streamflow forecasts are made routinely by
the National Weather Service (NWS) for seasonal river
volumes using Ensemble Streamflow Prediction (ESP),
which is a component of the NWS River Forecast Sys-
tem (NWSRFS). ESP uses the current hydrologic model
states as initial conditions and drives the model using
historical temperature and precipitation (Day 1985).
ESP produces a flow trace that corresponds to a partic-
ular year of historical weather. Taken together, the en-
semble of flow traces may be transformed into a prob-
abilistic forecast for any future variable. Current NWS
methodology allows a user to choose different methods
for transforming the ensemble values into a probabilistic
forecast. The ensemble values can be used to define an
empirical probability distribution or in fitting a proba-
bility distribution function (i.e., normal, weibull, etc.).
However, used alone, this procedure does not account
for any additional knowledge of the climate system,

Corresponding author address: Kevin Werner, NWS/CBRFC, 2242
W. North Temple, Salt Lake City, UT 84116.
E-mail: Kevin.Werner@noaa.gov

such as the El Niño–Southern Oscillation (ENSO) state,
that a forecaster may have. The ESP system includes
two weighting methods to account for the current cli-
mate state or forecasted climate conditions. One method
is a preadjustment technique that applies shifts to the
temperature and precipitation inputs based on climate
forecasts. The current NWS practice is to use climate
forecasts produced at the Climate Prediction Center
(CPC). The second method is a post-ESP technique that
allows a user to weight the resulting flow traces based
on user-defined weights. The current practice is to use
a technique developed at the Alaska Pacific River Fore-
cast Center (APRFC), known as the Alaska technique
(L. Rundquist 1995, personal communication). The
Alaska technique weights ESP-generated flow traces ac-
cording to the correspondence of their forcing with a
particular CPC forecast.

Several studies have demonstrated significant forecast
improvements when climate information is used as part
of the streamflow forecasting method. For example,
Hamlet and Lettenmaier (1999) modified the ESP ap-
proach by restricting attention to years (ensemble mem-
bers) that were similar in terms of the phase of ENSO
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FIG. 1. Location of test basins.

and the phase of the Pacific decadal oscillation (PDO).
In most cases this provided a set of ensembles that were
more tightly clustered, and closer to observed runoff,
than the full ensemble. On short forecast lead times of
less than 2 weeks, Clark and Hay (2004) recently dem-
onstrated significant forecast improvements in snow-
melt-dominated river basins when downscaled output
from a numerical weather prediction model was used to
replace the historical ESP traces.

This study describes and compares four post-ESP
weighting schemes to apply to river flow ensemble trac-
es based on the observed relationships between flow
and ENSO. Sixteen climate indices were examined as
potential candidates to be used in the weighting scheme.
The Niño-3.4 sea surface temperatures were determined
to be the strongest candidate index. Each weighting
scheme is described, including discussion of and opti-
mization to any adjustable parameters. Each weighting
scheme is optimized and applied to each of the test
basins for comparison to other weighting schemes. The
study also examines the preadjustment technique cur-
rently used in the NWS, using the Niño-3.4 index to
develop synthetic climate forecasts. The ranked prob-
ability skill score (RPSS) is used to assess the skill of
the various techniques (Wilks 1995).

2. Study areas and index choice

Three river basins in the Colorado Basin River Fore-
cast Center (CBRFC) area were selected as study basins:
The Green River Headwaters above Warren Bridge, Wy-
oming (WBRW4), in the northern part of the CBRFC
area (268 mi2), the Colorado River above Cameo, Col-
orado (CAMC2), in the middle part of the CBRFC area
(8050 mi2), and the Salt River above Chrysotile, Ari-
zona (SLCA3), in the southern portion of the CBRFC
area (2849 mi2). Figure 1 shows these basins in relation
to the Colorado River basin and the western United
States.

Previous studies have shown an El Niño signal to
exist in the southern portion of the CBRFC area (e.g.,
Clark et al. 2001 and Ropelewski and Halpert 1987).
Therefore a significant a correlation was expected be-
tween runoff volumes for SLCA3 and tropical Pacific
SST indices. Several extratropical indices where no sig-
nal was expected were also correlated with spring runoff
volumes. Figure 2 shows lagged month-by-month cor-
relations between seasonal spring runoff volumes for
each of these basins against 18 climate indices (see Table
1 for a description of the indices). These indices include
those that describe both extratropical teleconnection pat-
terns (Barnston and Livezey 1987) as well as those that
describe tropical SST and circulation anomalies asso-
ciated with ENSO. They are commonly used in climate
analyses. Spring runoff is the April through July volume
for CAMC2 and WBRW4 and the February through
May volume for SLCA3.

Correlations are shown for the year prior to observed

runoff and the year of the runoff. The 5% and 95%
significance levels indicated by dotted lines in Fig. 2
were calculated with a bootstrapping technique (Shao
et al. 1996). Correlations were computed between the
observed runoff and a randomly reshuffled time series
of the Niño-3.4 index. This was repeated 1000 times to
establish the 5% and 95% significance levels. Most of
the correlations with the extratropical climate indices
are not statistically significant (at the 90% level). How-
ever, the correlations with the ENSO-related indices are
statistically significant for various months for WBRW4
and SLCA3. Note correlations are opposite for these
two basins, in support of previous work (e.g., Cayan
and Webb 1992; Clark et al. 2001). The ENSO-related
indices are less significant for CAMC2. The Pacific de-
cadal oscillation may be important for WBRW4, but it
shows less significance for the two more southerly ba-
sins.

SLCA3 was chosen as the initial test basin based on
1) its long period of record (1952–98) and 2) its known
strong relationship to ENSO events (Fig. 2; Cayan and
Webb 1992; Clark et al. 2001). The correlations between
Niño-3.4 and SLCA3 volumes are shown at the bottom
in Fig. 2. Note the highest correlations (about 0.45) exist
for the November–December–January (NDJ) period
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FIG. 2. Correlation between observed seasonal volumes for the three study basins and selected indices (bold) and patterns (light) for the
months on the x axis; ‘‘m1’’ months refer to months from the year prior to the observed volume. Correlations were calculated for observed
volumes between 1952–98 (WBRW4 and SLCA3) and 1978–98 (CAMC2). The 5% and 95% significance levels calculated with a bootstrapping
method are depicted with a dashed line. Climate indices are listed in Table 1.

preceding the observed volume. Therefore a mean of
those 3 months will be used as a basis for the weighting
schemes.

NWSRFS was forced with station observations for
the period 1952–98. The simulated hydrologic states
(e.g., snow-water equivalent, soil moisture) were saved
on 1 February for each year. The model estimates of
these hydrologic states were used as initial conditions

for ESP reforecasts. By starting the reforecasts on 1
February, midseason snowpack information, which can
provide some predictability (McCabe and Dettinger
2002), is implicitly included in the reforecast. However,
traditional ESP forecasts weight the ESP ensemble
member resulting from each year’s historical observa-
tions equal to every other ESP ensemble member. In
doing so, predictability is entirely derived by knowledge
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TABLE 1. List of climate indices correlated with spring runoff
volumes for the test basins. Some correlations are shown in Fig. 2.
Where not otherwise noted, data are from the CPC FTP site
online at ftp://ftpprd.ncep.noaa.gov/pub/cpc/wd52dg/data/indices/
telepindex.nh.

Label Pattern

Niño-34
MEI

SOI
PDO
NAO

Niño-3.4 index
Multivariate ENSO index (Wolter and Timlin

1993, 1998)
Southern Oscillation index
Pacific decadal oscillation (Mantua et al. 1997)
North Atlantic Oscillation

EA
JET
WP
EP
NP

East Atlantic pattern
East Atlantic jet pattern
West Pacific pattern
East Pacific pattern
North Pacific pattern

NAO
WR
SCA
TNH
POL

Pacific–North American pattern
East Atlantic–west Russia pattern
Scandinavia pattern
Tropical–Northern Hemisphere pattern
Polar–Eurasia pattern

PT
SZ
ASU

Pacific transition pattern
Subtropical zonal pattern
Asia summer pattern

of the initial hydrologic states rather than from a forecast
of weather or climate conditions. By using the tradi-
tional ESP forecast as a benchmark for comparison, we
may assess the additional predictability that is obtained
by including climate information through various meth-
ods.

RPSS is used to evaluate the probabilistic forecasts
derived from ESP (Epstein 1969; Murphy 1969, 1971;
Hersbach 2000). The continuous version of the ranked
probability score (RPS) upon which the RPSS is based
is given by

`

2RPS 5 [P(x) 2 P (x)] dx, (1)E o

2`

where P(x) is the forecasted exceedence probability for
spring runoff volume, and Po(x) is the observed ex-
ceedence probability. For a continuous variable, such as
the spring runoff volume in a particular year, the ob-
served probability Po(x) will be either zero (if x is less
than the observed volume) or unity (if x is greater than or
equal to the observed volume). The RPS is distance sen-
sitive in that it increasingly penalizes forecasts that contain
forecasted probability farther away from the observed quan-
tity. RPSS is based on the RPS and is given by

RPSfRPSS 5 1 2 , (2)
RPSref

where RPS f and RPSref are the forecast being evaluated
and a reference forecast. The reference forecast is often
taken to be climatology. RPSS values are less than or
equal to unity. Positive RPSS values indicate percent
improvement in forecast skill, while negative values in-

dicate the reference forecast is superior to the forecast
being tested.

3. Post-ESP weighting scheme

Post-ESP weighting techniques weight ESP output
(flow) traces based on information that may add predic-
tive value to the forecast. In this case we use the Niño-
3.4 index, averaged over the NDJ period immediately
before the issue date of the forecast (i.e., 1 February).
The post-ESP technique is described as follows:

1) Compute a vector X of absolute differences between
the value of the NDJ Niño-3.4 index in the forecast
year and the values of the NDJ Niño-3.4 index in
all other years. Sort the vector X from lowest to
highest. That is,

X 5 (x , x , . . . , x ), (3a)1 2 n

ℵ 5 [x , x , . . . , x ], x # x · · · # x . (3b)(1) (2) (n) (1) (2) (n)

2) Compute a vector of weights; W 5 (w1, w2, . . . ,
wn), for all elements of the sorted vector ℵ:

l21
x(i )w 5 1 2 , x # x (4a)i (i ) (k)[ ]x(k)

w 5 0, x . x (4b)i (i ) (k)

n
k 5 NINT . (4c)1 2a

Here l is a distance-sensitive weighting parameter,
a is a parameter that defines the k nearest neighbors
used, and NINT refers to the nearest integer operator.
Higher values of l give more weight to years (en-
semble traces) in which the value of the NDJ Niño-
3.4 index is closer to the Niño-3.4 index in the fore-
cast year; higher values of a restrict attention to the
n/a elements in the vector ℵ. The forecast year’s
trace is excluded by setting its weight to zero.

3) Finally, compute the modified probability assigned
to each ESP trace

wip 5 , (5)i n

wO j
j51

where wi is the weight for the year from which his-
torical data were used to generate the ESP trace. The
modified cumulative distribution function (CDF)
(i.e., the resultant probabilistic forecast) is simply
the integral of the probabilities assigned to each ESP
trace. Figure 3 illustrates the post-ESP weights, pi.
Weights were calculated for l 5 1, 3, and 10, and
a 5 1 and 5 for the year 1972.

Four cases using this weighting scheme will be pre-
sented: equal weights, index difference weights, nearest-
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FIG. 3. 1972 post-ESP weights (i.e., pi) for various a and l combinations.

neighbor weights, and nearest-neighbors analog
weights.

a. Case 1: Equal weights (a 5 l 5 1)

The equal weighting (EW) scheme is the traditional
weighting scheme applied to ESP forecasts. Each trace
except the trace corresponding to the forecast year is
given the same weight. As in every other weighting
scheme, the trace corresponding to the forecast year is
omitted by giving it zero weight. Mean RPSS values
were computed for each year for the EW forecast for

SLCA3 with climatology as the reference forecast. The
results are shown in Fig. 4. The median RPSS value for
all years was 0.41 indicating a 41% improvement over
forecasts made using climatology. Similar results were
found for CAMC2 (39%; not shown). WBRW4 showed
lower forecast improvement over climatology (15%; not
shown).

Equal weighting forecasts represent current NWS
methodology. To show improvement over the current
methodology, EW forecasts will be used as the reference
forecast for RPSS calculations for the other weighting
schemes and methods presented here.
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FIG. 4. RPSS values for EW forecast with climatology as the reference forecast.

FIG. 5. Sensitivity test for case 2: index difference weighting. RPSS values are shown for
different values of the post-ESP index difference-sensitive adjustable parameter l for SLCA3
Feb–May volumes weighted with the NDJ Niño-3.4 index. RPSS values calculated using EW as
the reference forecast.

b. Case 2: Index difference weights (a 5 1, vary l)

The index difference weighting (IDW) scheme has
nonzero weights for all ensemble traces (since a 5 1),
but weights each trace differently based on the absolute
difference in the climate index for the forecast year and
the climate index for each year in the ensemble trace.
Larger values of l increasingly weight years with small-
er absolute differences in Niño-3.4 values. A sensitivity
test was conducted on the distance sensitive weighting
parameter l, which was varied between 1 and 40. The
median RPSS from the IDW forecasts was computed

for each increment of l, with the EW forecast used as
the reference forecast. This is shown in Fig. 5. For
SLCA3 weighted with the NDJ Niño-3.4, the optimal
l is about 20. A different l value may yield higher skill
scores if the IDW scheme is applied to a different basin,
a different index, or even a different period of record.

Figure 6 shows RPSS values for each reforecasted
year with years indexed according to their NDJ Niño-
3.4 value. This ranking may illuminate a systemic im-
provement in a particular ENSO regime. Although there
are a few years with large negative scores, the median
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FIG. 6. RPSS values using case 2: index difference weighting scheme for SLCA3 Feb–May
volumes. The post-ESP scheme uses Niño-3.4 averaged over the preceding NDJ and l set to 3.0.
Years are ranked according to values of NDJ Niño-3.4 on the x axis. The median RPSS value is
given in the legend; EW is the reference forecast for RPSS calculations.

FIG. 7. Sensitivity test for case 3: nearest-neighbor weighting. RPSS values are shown for
different values of the post-ESP nearest-neighbor selection parameter a for SLCA3 Feb–May
volumes weighted with the NDJ Niño-3.4 index. RPSS values calculated using EW as the reference
forecast.

RPSS is 0.246, indicating an overall improvement of
forecasts with IDW by almost 25% over EW forecasts.
No major systemic bias toward a particular ENSO re-
gime was apparent.

c. Case 3: Nearest-neighbor weights (l 5 1, vary a)

The nearest-neighbor weighting (NNW) scheme uses
only the k or N/a years with Niño-3.4 values closest to
the forecast year. Each of the k years is weighted equally.
Larger values of a include a decreasing number of an-
alog years in the weighting scheme.

As with case 2, a sensitivity test was conducted. Here
the nearest-neighbor selection parameter a was varied

from 1 to 10. Figure 7 shows the results of this test.
The largest median RPSS values occur near a 5 7. This
indicates only seven ESP traces (or one-seventh of the
number of ESP traces) will be included in the post-ESP
forecast. Note that as with case 2, this choice of a is
unique to the dataset (basin) used in the sensitivity test.

Similar to Fig. 6, Fig. 8 shows RPSS values for each
reforecasted year with years ranked according to their
NDJ Niño-3.4 value. Here the median forecast improve-
ment over EW is 26%. As with IDW, no systemic bias
toward forecast skill improvement in a particular ENSO
regime is apparent.

A modified version of this weighting scheme only
uses in the forecast the ensemble traces corresponding
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FIG. 8. RPSS values using case 3: nearest-neighbor weighting scheme for SLCA3 Feb–May
volumes. The post-ESP scheme uses Niño-3.4 averaged over the preceding NDJ and a set to 4.5.
Years are ranked according to values of NDJ Niño-3.4 on the x axis. The median RPSS value is
given in the legend; EW is the reference forecast for RPSS calculations.

FIG. 9. RPSS values using case 3a: tercile analog weighting scheme for SLCA3 Feb–May
volumes weighted with Niño-3.4 averaged over the preceding NDJ. The median RPSS value is
given in the legend; EW is the reference forecast for RPSS calculations.

to years with Niño-3.4 (or whatever other index is cho-
sen) in the same tercile as the forecast year. For example,
if a year is classified as ‘‘El Niño,’’ attention is restricted
to just El Niño years, and the El Niño traces are assigned
equal weights in computing the forecast CDF. This ap-
proach is similar to that used by Hamlet and Lettenmaier
(1999) and is sometimes used at NWS field offices when
the ENSO state is known (i.e., El Niño, neutral, or La
Niña). The difference between this method and the
method presented above is that years close to the bound-
ary of a given category will be compared to all other
years in that category, and not to the k closest neighbors.
Figure 9 shows the RPSS values computed with the
modified nearest-neighbor weights or tercile analogue
weights (TAW) relative to EW schemes. Here the fore-
casts have less skill than the reference EW forecasts, as
indicated by a negative RPSS value (20.04).

d. Case 4: Distance-sensitive nearest-neighbor
weighing (both a and l vary)

The distance-sensitive nearest-neighbor weighting
(DSNNW) utilizes the concepts of both cases 2 and 3.

As with case 3, only k nearest neighbors are included
in the post-ESP weighting scheme. Further, as in case
2, the weights assigned to each of the included years
are dependent on the magnitude of the absolute differ-
ence in the climate index for the ESP trace year and the
forecast year. As with other methods, a sensitivity test
was conducted jointly on l and a parameters where
each was varied independently of the other between 1
and 10. The results were plotted in the contour plot
shown in Fig. 10. The optimal combination of l and a
was taken to be the maximum point on the plotted RPSS
surface. Finer-scale contour plots show the maximum
median RPSS value occurs near l 5 1.5 and a 5 6.
Note that although we used the global optimum here,
several different parameter combinations will result in
similar skill.

Figure 11 shows the RPSS score relative to EW for
each year ranked according to the NDJ Niño-3.4 value.
As expected from Fig. 9, the results are quite similar
to NNW. The median RPSS indicates a nearly 28% me-
dian forecast skill improvement, which is slightly higher
than that for IDW and NNW. Since l is close to unity,
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FIG. 10. Sensitivity test on the post-ESP index difference-sensitive adjustable parameter l and
nearest-neighbor selection parameter a for SLCA3 Feb–May volumes weighted with Niño-3.4
averaged from the preceding Nov through Jan. Median RPSS over all years 1952–98 are contoured;
EW is the reference forecast in RPSS calculations. The maximum RPSS value occurs near a 5
6 and l 5 1.5.

FIG. 11. RPSS values using case 4: distance-sensitive nearest-neighbor weighting scheme for
SLCA3 Feb–May volumes. The post-ESP scheme uses Niño-3.4 averaged over the preceding NDJ
and a 5 6 and l 5 1.5. Years are ranked according to values of NDJ Niño-3.4 on the x axis.
The median RPSS value is given in the legend; EW is the reference forecast for RPSS calculations.

it is expected that the DSNNW results would be similar
to the NNW. This suggests that for this basin and this
forecast, the inclusion of the distance-sensitive weight-
ing parameter l does not add much forecast skill.

4. Weighting scheme comparisons

In order to assess strengths and weaknesses of the
different weighting schemes, they are compared for the

test basins roughly following a line of longitude in the
CBRFC area described earlier.

a. SLCA3

Figure 12 shows RPSS scores for each of the weight-
ing schemes, using the EW forecasts as the reference.
The adjustable parameter(s) in all weighting schemes
were optimized as described in section 3. For SLCA3,
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FIG. 12. RPSS for all weighting schemes for SLCA3 with equal weights as the reference forecast
for RPSS calculation (RPSS 5 0 5 horizontal line for EW). Mean RPSS values are shown in
parentheses on the legend. Weights calculated based on the preceding NDJ Niño-3.4 value. Ad-
justable parameters are the same as before. The median RPSS value is given in the legend.

FIG. 13. RPSS for all weighting schemes for CAMC2 with equal weights as the reference
forecast for RPSS calculation (RPSS 5 0 5 horizontal line for EW). Mean RPSS values are
shown in parentheses on the legend. Weights are based on the preceding NDJ Niño-3.4 values.
The median RPSS value is given in the legend.

DSNNW has the greatest median skill (0.276), followed
by NNW (0.262) and IDW (0.246). For most years, the
RPSS values for IDW, NNW, and DSNNW are quite
similar. For this basin, the inclusion of both adjustable
parameters [the nearest-neighbor selection parameter
(a) and the distance sensitive parameter (l)] in the post-
ESP weighting scheme had only a small effect. In this
case, the inclusion a or l alone have similar effects in
biasing to similar years, and neither parameter appears
preferable.

b. CAMC2—Colorado River near Cameo, Colorado

CAMC2 is located on the Colorado River near Grand
Junction, Colorado. It includes inflow from all the trib-
utaries above. It is thought to be a nodal region where
ENSO has little effect (i.e., areas to the north have op-
posite teleconnection patterns to ENSO as do areas to

the south) (Cayan and Webb 1992; Clark et al. 2001).
As such, we do not expect to gain much skill by applying
the postweighting schemes based on Niño-3.4 indices.
Indeed, the correlations between spring runoff and NDJ
Niño-3.4, as shown in Fig. 2, were not statistically sig-
nificant.

As was done in the previous section for SLCA3, a
sensitivity test was conducted on the adjustable param-
eters. The values of the parameters maximizing the
RPSS were determined to be l 5 1 and a 5 1.75.
Therefore NNW and DSNNW provided the same so-
lution. This choice of a and l indicates the 27 nearest
neighbors will be equally weighted. Figure 13 shows
calculated RPSS for all weighting schemes applied to
1 February reforecasts of April through July water vol-
ume for CAMC2. As with SLCA3, the years are ordered
by the NDJ Niño-3.4 value. Both the NNW and
DSNNW schemes showed a median RPSS of just under
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FIG. 14. RPSS for all weighting schemes for WBRW4 with equal weights as the reference
forecast for RPSS calculation (RPSS 5 0 5 horizontal line for EW). Mean RPSS values are
shown in parentheses on the legend. Apr–Jul WBRW4 runoff volumes are weighted on NDJ
Niño-3.4 values. The median RPSS value is given in the legend.

4%, indicating only a small improvement over EW. Un-
like SLCA3, the inclusion of the distance-sensitive pa-
rameter, l, contributed nothing to the improvement over
EW.

c. WBRW4—Green River at Warren Bridge, Wyoming

WBRW4 is the headwater basin of the Green River
near Daniel, Wyoming. It is the northernmost basin in
the CBRFC area. The teleconnections with ENSO are
of the opposite sign and weaker than for SLCA3. The
maximum correlations between the Niño-3.4 monthly
index and April through July seasonal discharges are
about 20.3 for May of the year prior to and February
of the year of the observed discharge. This value is a
little over half the observed correlation for SLCA3. The
correlation between the NDJ Niño-3.4 value and the
spring runoff is about 20.3. Although the Pacific de-
cadal oscillation index shows greater correlations with
WBRW4 spring runoff, its variability is on a longer time
scale than the historical record at WBRW4. Therefore,
as with the other basins, the NDJ Niño-3.4 index is used
here. Figure 14 shows RPSS calculations similar to the
other two basins described. For WBRW4, 1 February
ESP reforecasts were made for 1952 through 1998. As
with the other basins, the ensemble traces were then
weighted with the 3-month mean NDJ Niño-3.4 index
from the period immediately preceding the runoff.

A sensitivity experiment on the adjustable parameters
showed optimal values for l 5 1 and a 5 3. The RPSS
resulting from the various weighting schemes is shown
in Fig. 14. As with CAMC2, the DSNNW scheme is
identical to NNW. Forecast skill improvements are near-
ly 6%, which is only slightly better than for CAMC2.

5. Pre-ESP
The NWSRFS has a capability to adjust the mean

areal temperature (MAT) and mean areal precipitation

(MAP) prior to input into ESP-based climate forecasts
(i.e., pre-ESP). The current practice is to use forecasts
from CPC using a technique in the NWS software
known as the preadjustment technique (Perica 1998).
The preadjustment technique modifies the MAT/MAP
input into ESP. An additive adjustment is made to MATs
while a multiplicative adjustment is made to MAPs
based on a particular CPC forecast. These adjustments
are calculated from ‘‘shifted anomalies’’ in the distri-
butions of the forecasts. The adjustments are usually
minor. The preadjustment technique is the most com-
monly used method by NWS River Forecast Centers to
account for climate forecasts in long-term water supply
forecasts.

Results from the post-ESP experiments in the pre-
vious section were compared to pre-ESP results. Since
a long-term archive of CPC forecasts does not exist and
the post-ESP methods are based directly on climate in-
dices rather than CPC forecasts, two methods were used
to emulate the existing preadjustment method. The first
method used the observed linear regression relationships
between the Niño-3.4 index and MAT/MAP anomalies.
The second method used resampling methodology. As
with post-ESP, both methods base ENSO relationships
on the NDJ Niño-3.4 index.

a. Linear ENSO–‘‘weather’’ relationships

Relationships between seasonal MAT and MAP
anomalies and the NDJ Niño-3.4 index were computed
with a linear regression analysis:

MAT 5 a 1 b Niño-3.4, (6)anom T T

MAP 5 a 1 b Niño-3.4, (7)anom P P

where MATanom and MAPanom are the seasonal MAT and
MAP anomalies for the forecast season. Niño-3.4 is the
NDJ Niño-3.4 index for the forecast year. The a and b
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FIG. 15. RPSS from SLCA3 with the NWSRFS preadjustment technique based the observed
linear correlations between NDJ Niño-3.4 and MATs and MAPs. Results are sorted by NDJ Niño-
3.4 values. The median RPSS value is given in the legend.

FIG. 16. RPSS from SLCA3 with the NWSRFS preadjustment technique based the resampling
method to create synthetic CPC reforecasts. Results are sorted by NDJ Niño-3.4 values. The
median RPSS value is given in the legend.

terms are found through a linear regression analysis
minimizing the squared error function.

SLCA3 seasonal mean MATs exhibit a negative cor-
relation with Niño-3.4 while seasonal total MAPs have
a positive correlation with Niño-3.4. RPSS values were
calculated using the EW post-ESP reforecasts from the
previous section as the reference forecast. The resulting
RPSS is shown in Fig. 15. Overall the median RPSS is
13%, indicating a small improvement of the forecast.
However, there are many years, particularly La Niña
years, with RPSS . 0. ENSO-neutral years showed very
little difference in forecast skill relative to La Niña and
El Niño years. It is speculated that the strong La Niña
signal in Arizona is responsible for the generally higher
RPSS values during La Niña years.

b. Resampling method

The resampling method is an alternative approach for
creating synthetic CPC forecasts based on a climate in-
dex. First, the climate index value for a given reforecast

year is used to find the historical years that are its nearest
neighbors. Random resampling of monthly MAT and
MAP values from the nearest neighbors is done to con-
struct synthetic time using the same historical years as
before, 1952–98. One thousand synthetic MAT and
MAP years were created by resampling monthly MAT
and MAP values at random from the 15 nearest neigh-
bors according NDJ Niño-3.4 values. Running 3-month
values were computed for each synthetic year. The num-
ber of synthetic years in each extreme tercile (i.e., warm
or cold for MATs) was computed. Synthetic CPC re-
forecasts were set to the tercile with the most number
of synthetic years if more than one-third of the synthetic
years fell in that tercile. For example, for a particular
forecast year, 450 of the synthetic MATs were in the
cold tercile, 350 were in the near-normal tercile, and
200 were in the warm tercile. Therefore the synthetic
CPC reforecast for that year would be for cold anomalies
of (450 2 333)/1000, or 11.7% increased likelihood.

RPSS for SLCA3 reforecasts based on the resampling
preadjustment technique are shown in Fig. 16. The over-
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FIG. 17. Forecasted runoff volumes for SLCA3 using three different weighting methods: (top) EW, (middle) post-
ESP DSNNW, and (bottom) pre-ESP resampling. Observed runoffs are shown with dots for each year.

all skill improvement was extremely minimal (less than
1%). Further, individual years showed very minimal dif-
ferences in forecast skill relative to EW. This indicates
that the preadjustment technique as applied here (i.e.,
with the resampling method to create synthetic MATs
and MAPs) may not be capable of significantly im-
proving an ESP forecast.

6. Forecasted runoff example

A series of retrospective runoff volume forecasts was
made for SLCA3 using the weighting schemes described
in this study. Figure 17 shows the ‘‘forecasts’’ made for
each year using three of the methods presented: EW,
post-ESP DSNNW, and pre-ESP resampling. It is ap-
parent from the figure that the DSNNW reduces the
spread of the forecast for most years (e.g., 1959) where-
as pre-ESP does not. The previous RPSS results that

showed DSNNW superior to EW and pre-ESP is ap-
parent here as well, although this result is not true for
all years (e.g., 1985).

7. Summary and conclusions

Three basins in the Colorado River basin were used
in the study, one each in the northern, middle, and south-
ern parts of the Colorado basin. This was an attempt to
capture and examine the well-known ENSO climate sig-
nal. The Niño-3.4 index was chosen as a teleconnection
index that could introduce information on the climate
state into the forecast process. The NWS Ensemble Pre-
diction System was used to produce ensembles of
streamflow forecasts in reforecast mode. The weighting
schemes were applied in a post-ESP process. A separate
evaluation was applied using a pre-ESP technique. Both
techniques are available to NWS River Forecast Centers.
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Improvements and differences between the techniques
were evaluated using the RPSS. The goal was to find
if and which weighting technique(s) would produce im-
proved seasonal runoff forecasts in the Colorado basin.
A secondary goal was to quantify the improvement by
showing a percent improvement over the equal weights
weighting scheme or climatology.

For SLCA3, the inclusion of both of the post-ESP
parameters, the distance-sensitive parameter l, and the
nearest-neighbor selection parameter a in the DSNNW
showed the best improvements in forecast skill. How-
ever, for WBRW4 and CAMC2 the distance-sensitive
parameter l was not important and DSNNW was the
same as NNW. For SLCA3, DSNNW was only slightly
better than NNW, suggesting that the distance-sensitive
weighting parameter may not be very important for that
basin either. As was expected, forecast improvements
were more substantial (nearly 28%) for the basin with
the stronger ENSO correlations (SLCA3) than for the
basin with minimal ENSO correlation (CAMC2 showed
only 4%).

The optimization of the post-ESP parameters pre-
sented in this paper was specific to seasonal runoff vol-
ume forecasts. The post-ESP weighting technique pre-
sented here would be applicable to any forecast quantity
(such as the seasonal peak flow value or date). However,
a different set of post-ESP parameters would be optimal
for each different forecast quantity. This point suggests
the applicability of the post-ESP technique to forecast
problems outside the scope of this study.

The post-ESP techniques showed more forecast skill
improvement than either of the pre-ESP methods used
here. Both methods used to generate pre-ESP forecast
showed only very minimal forecast skill improvement
(0%–5%) for SLCA3, which showed forecast skill im-
provements of nearly 30% for post-ESP. The pre-ESP
methods used here required a modification of the ex-
isting NWSRFS preadjustment method based on CPC
forecasts since a long-term historical archive of such
forecasts is not available. Therefore the preadjustment
was based on the Niño-3.4 index instead of CPC fore-
casts.

It should be noted that preadjustment techniques are
more computationally cumbersome than post-ESP tech-
niques. Where only one set of ESP reforecasts is needed
to optimize the post-ESP parameters, many sets of ESP
reforecasts are necessary if a similar optimization of
pre-ESP parameters (such as the number of nearest
neighbors chosen in the resampling method) is to be
done. This point alone argues strongly for post-ESP
techniques in operational settings.

The results shown here demonstrate the potential val-
ue of using a post-ESP technique for forecasts of sea-
sonal runoff, especially in regions with strong ENSO
correlations. As these results are based on ensemble
output from a physically based model (NWSRFS ESP),
the approach can be extended to variables beyond sea-
sonal runoff volumes that may be difficult to predict

with statistical models alone. The magnitude and timing
of the seasonal peak flow are examples of quantities that
an ensemble-based physical model can easily simulate.
Further research is necessary to explore the potential of
the techniques presented here in the context of other
variables, for example, the timing of the spring runoff
peaks, which are difficult to capture using dynamical
models. Further research will also apply these concepts
to forecasts for other lead times and for other geographic
areas.
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