Water Resource Status and Forecast Methods Of the Western Region RFC's

How does the RFC make water supply forecasts?

What is our current status and projection?
 Where can I find this water resource information?

The Process of Making Water Supply Forecasts

- Two fundamental methods
- statistical regression equations to relate observed data to a future seasonal streamflow volume
- ESP using the current states of our continuous conceptual daily river model as the initial conditions then applying various schemes of future weather

Current RFC Forecast Tools

- Sacramento Soil Moisture Accounting (SACSMA) commonly used at RFCs
 - 6 hour time step for routine flood forecasting operations
- Ensemble Streamflow Prediction used for longer time scales
- Statistical regression equations used for seasonal streamflow prediction

Statistical Regression

• Multivariate regression equations created using principal component analysis (PCA) Data sites used in snowmelt regression equations tend to be highly inter-correlated. PCA gets beyond this and allows us to calculate optimal coefficients Can be non-linear which helps with the extremes

Equation # 4

Y 1 LPHC2/QCMRZZZ, Ap-Jl, LA PLATA - HESPERUS

=	3.711		
+	-0.918	X1	SOI/CIIRZZZ,Ja,
+	1.966	х3	HSPC2/PPMRZZZ,Ja,FORT LEWIS
+	0.859	X5	MNCC2/SWIRMZZ,Fe,MANCOS
+	0.600	X 6	LPLC2/SWIRZZZ,Fe,LA PLATA SNOWCOURSE

Number of observations used = 26 Number of principal components used = 1

CORRELATION COEFFICIENT (R) =	0.862	
STANDARD ERROR =	6.351	(rank = 10)
JACKKNIFE CORRELATION COEFFICIENT =	0.838	
JACKKNIFE STANDARD ERROR =	6.851	
JACKKNIFE BIAS: above average flow =	-2.994	(12 obs.)
below average flow =	2.991	(14 obs.)

				JACKKNIFE	JACKKNIFE
YEAR	OBSERVED	COMPUTED	ERROR	COMPUTED	ERROR
76	15.85	11.20	-4.65	11.85	-4.00
77	3.68	11.81	8.13	12.74	9.06
78	26.99	27.84	0.85	27.88	0.89
79	44.28	44.10	-0.18	44.29	0.01

ESP

Ensemble Streamflow Prediction (ESP)

 Uses current model states of soil moisture, modeled snowpack and current flow
 Various methods of data assimilation are in use at the RFC's to update the seasonal snowpack with observed data

-> Future Time

Past <-

71

72

73

74

75

Historical Precip/Temps for Past Years Creates a Flow for Each Year

Why climate forcing in the short-term is a bad idea

Current ESP Capabilities

- OHD's Ensemble Pre-Processor (EPP):
 - Testing and development at 4 RFCs: CN, CB, AB, MA
 - Currently leverages:
 - Historical HAS QPFs
 - CDC's frozen GFS
 - Basin climatologies
- Local efforts at other RFCs:
 - NC using HPC confidence intervals
 - OH using geospatial statistics
- CPC Pre-adjustment technique

Elements of a Hydrologic Ensemble Prediction System

Advancements in forecast dissemination

Western Water Supply
NWRFC's ESP graph

Western Water Supply

- Color coded water supply map for all NWS water supply forecasts
- Forecast point specific plots depict current year forecast evolution and month by month climatologies

Development began in 2005
 Includes participation from each RFC

Goals and Motivation (for Western Water Supply page)

- A "one stop shop" for NWS water information at the seasonal timescale
- Consistent presentation of products between RFCs
- Harness collective innovation from multiple offices

Western Water Supply Web: FY07 Developments

- Incorporate water supply points east of the Continental Divide (MB, AB, and WG RFCs)
- Add ESP forecasts to forecast plot – prototype developed at NWRFC
- Add forecast verification information – prototype developed at WRH/SSD
 Develop database
 - capabilities for website

ESP prototype plot

Verification prototype plot

ESP Services

- Prototype multi-year ensemble based plot developed at NWRFC
- Dynamically generated plots based on selectable
 - Start and end year
 - Forecast window
 - Background layers

Station	Water Year	Interval		Layers
ARAHI - ANDERSON RANCH DAM TB12 HWRII - BIG LOST-AT HOW L RNCH NR CHILLY MACH - BIG LOST-AT MACKAY HALH - BIG WOOD-AT HAILEY MAGH - BIG WOOD AMAGIC DAM OUTFLOW DARM8 - BITTERROOT-NR DARBY BITM8 - BITTERROOT-NR DARBY BITM8 - BITTERROOT-NR BONNER LUCH - BOISE-BOISE LUCKY PEAK DAM PARH - BOISE-NR PARMA BOXWI - BOXLEY-NEAR EDGEWICK HOTH - BRUNEAU-NR HOT SPRINGS	First 2005 2006 2007 V Last 2007 2006 2005 V	O Jan-Jul O Jan-Aug Jan-Sep Feb-Sep Mar-Jul Mar-Aug Mar-Sep	Apr-Jun Apr-Jul Apr-Aug Apr-Sep May-Jul May-Sep	 ✓ ESP background ✓ ESP expected ✓ Sum monthly observed ✓ ✓ Forecast background ✓ Water supply forecast ✓ Grid
	Generate Graph			

· Choose graph characteristics (or accept defaults); then click on "Generate Graph" button to plot data.

• Click on station description in listbox. The program will read the data for the selected station and then (re)enable additional controls. Note: letting the mouse cursor rest on a selection for a while will cause the station ID to appear temporarily.

ESP Service (con't)

Created: 2007Feb01 22:41 GMT

ESP Service (con't)

- Ensemble analysis software prototype
 Developed at CBRFC and improved by CN and NW
 - Allow web user access to NWS ensemble software (ESPADP)
 - Manipulation of raw ensemble

Current Status

- <u>CBRFC's snow data page</u>
- <u>National Operational Hydrologic Remote</u>
 <u>Sensing Center</u>
- Nationwide precip analysis interface
- Western Water Supply
- Drought Monitor

Water Supply Forecast Release Schedule								
For 2006-2007 Water Year								
Type of fcst	Month							
	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul
Official Forecast		8	7	7	6	7	7	9
Peak Flow Forecast		9	8	8	9	8	8	10
Mid-month update	21	19	15	15	19	17	21	

Forecast Nino3.4 SST anomalies from CFS

Base period for climatology is 1971-2000. Base period for bias correction is 1982-2003.

Verification

"Hydrologic forecast verification must be conducted in the terms by which the forecasts were created. This requires that researchers become knowledgeable of operational forecasting procedures." – Bisher Imam and Holly Hartmann, AHPS verification report 2006

Water supply verification overview

- Verification should allow comparisons between current and new forecast methodologies
- Error, skill, and categorical statistics
- Conditional statistics based on lead time, year, etc
- Side-by-side comparison of multiple forecast sources
- Dynamic, user specifiable plots created from database
- Deterministic (e.g. single value) and probabilistic (e.g. ensemble) forecast verification

Verification: Archive visualization

- Historical forecast and reforecast examination
 - Visually compare archived forecasts and reforecasts to observed volumes

Verification: Error statistics

Error Statistics

- RMSE, MAE, ME for deterministic, RPS for ensemble
- Conditional on lead-time (left) and year (right)
- Dynamically generated

Verification: Skill

Skill Scores

- RMSE-SS for deterministic; RPSS for probabilistic
- Reference forecast = climatology
- Conditional statistics based on lead time and year
- Dynamically generated

Verification: Categorical

- Traditional (NWS) verification including:
 - False Alarm Ratio (FAR)
 - Probability of Detection (POD)
- Category definitions tied to climatology values (e.g. mean flow, terciles, etc.) or user definable

