A Multi-Site Stochastic Weather Generator for Improved Streamflow Forecast

Nina Caraway & Balaji Rajagopalan

University of Colorado, Boulder

Seasonal to Two-Year Colorado River Streamflow Prediction Workshop
CBRFC, Salt Lake City

March 21, 2011
Multi-Model Ensemble Combination and Conditional Stochastic Weather Generation Tool for Improved Streamflow Forecasts

- National Oceanic and Atmospheric Administration (NOAA) funded project
- NOAA program element
 - Climate Prediction Program for the Americas (CPPA)
 - Hydrologic and water resources applications
- Principal Investigator: Balaji Rajagopalan
- Collaborators from Colorado Basin River Forecasting Center (CBRFC)
 - Dr. Kevin Werner
 - Dr. Michelle Schmidt
Outline

- Background
- Motivation
 - Current Ensemble Streamflow Prediction (ESP) method
 - Need for weather generator
- Stochastic Weather Generators
 - K-Nearest Neighbor re-sampling approach
- Application
- Results
- Future plans
Background

- Stress on water resources
 - Drought
 - Socio economic growth
- Need for efficient water resources management
 - Requires skillful streamflow predictions
 - For short term (weeks) time scales
 - And long term (seasonal to inter-annual)
 - Also incorporate seasonal climate forecasts based on large-scale climate forcings
CBRFC & Natural Resource Conservation Service (NRCS) work together to predict streamflows at two time scales.

At seasonal time scale, CBRFC uses the following models:
- **Statistical Water Supply (SWS)**, a regression based method that relates observed data with future streamflow
- **Ensemble Streamflow Prediction (ESP)**
 - Based on historical daily weather sequence and a physically-based watershed model (such as the Sacramento Soil Moisture model, SAC-SMA)

NRCS uses a principle components regression technique.

Forecasts from these models are qualitatively combined to issue a single ‘coordinated’ forecast for U.S. Bureau of Reclamation (USBR).
The ESP forecasts start at time ’t’, proceeding as follows:

- Calibrated watershed model is run with historical data until time ’t’
- Thus obtaining the initial condition for the hydrologic state of the basin
- Historical weather sequence for the period ’t+1’ through ’t+k’ (desired length of forecast) is used to force the hydrologic model
- Which creates an ensemble of streamflow sequences
 - Where the number of ensembles is equal to number of historical years
Motivation: ESP

- Limited historical data means limited ensembles
- Incorporating seasonal forecasts further reduces the number of ensembles
 - For instance, forecasting based on warm ENSO phase
- Need arises for a simple and efficient approach to generate a 'rich variety' of streamflow ensembles
 - Will allow for robust estimation of probability density functions (PDFs)
- Hence bringing in stochastic weather generators
Traditional weather generators are parametric

- Generate ensembles of weather sequences
- Employ Markov chain for precipitation occurrences
- PDFs (Gamma, Log-Normal, etc) for precipitation amounts
- AR-1 for maximum and minimum temperatures (e.g., Richardson 1981)

Extensions to multi-site were not trivial

Extensions to 'conditional' generation (i.e., conditioned on seasonal climate forecasts) also proved difficult
Nonparametric weather generators offer attractive alternative

- Data-driven
 - Thus can ’capture’ deviations from theoretical probability distributions
 - And also nonlinearities between variables
- Can be based on kernel density estimators (Rajagopalan et al., 1996)
- Or use resampling (Lall and Sharma, 1996; Rajagopalan and Lall, 1999)
K-Nearest Neighbor Weather Generator

- Semi-parametric weather generator (Apipattanavis et al., 2007)
 - First precipitation state is generated by a Markov chain fitted to the historical data (wet or dry)
 - Then precipitation time series is created using Markov chain
 - A K-Nearest Neighbor (KNN) method is applied to the time series, which can be expressed as simulating from the conditional PDF:

\[
f(x_t \mid x_{t-1}, S_t, S_{t-1})
\]

- where \(x_t \) and \(x_{t-1} \) are the weather states and \(S_t \) and \(S_{t-1} \) are the precipitation state on day \(t \) and \(t - 1 \)
K-Nearest Neighbor Method

- Suppose January 1st is the simulated day of interest
- A 7-day (can be user defined) window is placed on January 1st (i.e. December 29th to January 4th)
 - This window around a given point is defined as a 'neighborhood'
- Calculates weighted Euclidean distance between weather variables of current day and neighbors
- Nearest neighbor receives a higher weight and the kth neighbor gets the least
- One of the historical days within the 7-day window is selected based on the previously calculated weights
- For example, a simulated January 1st could be January 3rd, 1985 from historical data
K-NN: A Physical Example

- Unconditional resampling
 - Drawing cards from a well-shuffled deck
 - Corresponds to selecting a (single or a set of) historical years from the record, with equal chance

- Conditional resampling
 - Drawing cards from a biased deck
 - Corresponds to selecting a (single or a set of) historical years with unequal chance
Application
Single Site Application

- Arboles, Colorado in San Juan Basin
- Three elevation zones available, lower was chosen
- Daily weather variables 1961-2004
 - Precipitation
 - Maximum temperature
 - Minimum temperature
- 50 simulations each 44 years long
- Statistics of simulated and historical data were compared
The three stations (upper, middle, and lower) were spatially averaged to produce a 'synthetic' single site time series.

- Daily weather is generated at all locations simultaneously.
 - Captures spatial dependency automatically.

Future modifications include elevation weighting or Principal Component Analysis (Yates et al., 2003).
A suite of statistics were computed from the simulations and compared with historical observations

- Displayed as boxplots

Distributional Statistics
- Mean
- Standard Deviation
- IQR
- Skew
- Probability density functions (PDFs)

Threshold exceedances and extremes
- Average number of wet and dry days
- Total rainfall exceeding a threshold (e.g., 75th percentile)
Figure: Single Site Max. Temperature
Figure: Single Site Min. Temperature
Figure: Single Site Precipitation
Figure: Single Site PDFs
Figure: Average Wet and Dry Days in Selected Months
Figure: Precipitation Sums Above Thresholds
Figure: Single Site Max. Temperature from Averaged Multi Site
Figure: Single Site Min. Temperature from Averaged Multi Site
Figure: Single Site Precipitation from Averaged Multi Site
Figure: Single Site PDFs from Averaged Multi Site
Conditional Simulation

- Conditioned on International Research Institute (IRI) seasonal forecast
- So if prediction is $A:N:B = 40:35:25$
- Divide historical (seasonal) total into 3 tercile categories
- Bootstrap 40, 35, and 25 samples of historical years from wet, normal, and dry categories
- Then apply weather generator
Summary and Plans for Near-Term

- K-NN weather generator implemented and tested on small region in CO river basin
 - Historical statistics were well reproduced
- Further testing will include
 - Additional statistics, such as extreme precipitation, hot and cold spells, etc
 - Better weighting approaches to generate the ’synthetic’ single site
- Also will perform testing on conditional simulation based on seasonal climate forecasts
- Then testing will be performed on other sites in Upper Colorado River Basin
- Ultimately, multi-site weather sequences will be driven through SAC-SMA
 - Performance of the streamflow ensembles will be evaluated
 - Has been done with Precipitation-Runoff Modeling System (PRMS) before (Apipattanavis et al., 2007)
How will USBR and CBRFC benefit?

- Project has 2 key things to develop
 - A conditional stochastic weather generator to provide daily weather ensembles based on NWS short term and NOAA seasonal outlooks
 - An optimal multi-model ensemble combination, which will provide a combined ensemble forecast from physical and statistical models
- Project will also build on a multi-model statistical streamflow forecast tool
 - Demonstrated on the Gunnison River Basin (Regona et al., 2006) and Upper Colorado River Basin (Bracken et al., 2010)
- These new and improved forecasts will be used for efficient operation and management of major reservoirs
 - Thus impacting water resources, agriculture, hydropower, and aquatic environments in the southwest and inter mountain regions of western U.S.
Questions?