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ABSTRACT

This study introduces medium-range meteorological ensemble inputs of temperature and precipitation
into the Ensemble Streamflow Prediction component of the National Weather Service River Forecast
System (NWSRFS). The Climate Diagnostics Center (CDC) produced a reforecast archive of model fore-
cast runs from a dynamically frozen version of the Medium-Range Forecast (MRF) model. This archive was
used to derive statistical relationships between MRF variables and historical basin-average precipitation
and temperatures. The latter are used to feed the Ensemble Streamflow Prediction (ESP) component of the
NWSRFS. Two sets of ESP reforecasts were produced: A control run based on historically observed
temperature and precipitation and an experimental run based on MRF-derived temperature and precipi-
tation. This study found the MRF reforecasts to be generally superior to the control reforecasts, although
there were situations when the downscaled MRF output actually degraded the forecast. Forecast improve-
ments were most pronounced during the rising limb of the hydrograph—at this time accurate temperature
forecasts improve predictions of the rate of snowmelt. Further improvements in streamflow forecasts at
short forecast lead times may be possible by incorporating output from high-resolution regional atmo-
spheric models into the NWSRFS.

1. Introduction and background

Ensemble-based river forecasts have been made by
the Colorado Basin River Forecast Center (CBRFC)
for many years with a component of the National
Weather Service River Forecast System (NWSRFS)
known as Ensemble Streamflow Prediction (ESP). The
current operational practice at the CBRFC is to use
“deterministic” meteorological forecasts of tempera-
ture for 1–10 days and precipitation for 1–3 days fol-
lowing the initialization time of the forecast period. Af-
ter the meteorological forecast period, ensembles of
historical temperature and precipitation data sequences
are added to the end of the deterministic meteorologi-
cal forecasts by blending to form ensemble model in-
puts extending out to several months. While this ap-

proach provides probabilistic forecasts on seasonal time
scales, it does not provide probabilistic forecast infor-
mation for days 1–10. Many applications (e.g., reservoir
operations) can benefit from probabilistic forecast in-
formation on the shorter time scales as well. This study
demonstrates the use of medium-term (lead times from
1 to 14 days) probabilistic forecasts of temperature and
precipitation in the NWSRFS. Previous studies (e.g.,
Wood et al. 2002) have focused on improving stream-
flow forecasts using the ESP approach, but these stud-
ies are restricted to seasonal time scales.

This study incorporates medium-range (1–14 day)
forecasted atmospheric model input into an ensemble
hydrologic model. In doing so, the hydrologic model
translates both the forecast and its associated uncer-
tainty into a hydrologic forecast. A description of the
methodology including the study area, the atmospheric
model, the downscaling technique, and the river fore-
cast model are presented. Results are presented for a
headwater basin and for a larger main stem basin.
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2. Method

Figure 1 shows the method by which meteorological
forecasts are integrated into ESP river forecasts on an
operational basis. Meteorological forecast information
is derived from a Medium-Range Forecast (MRF)
model. This information is downscaled to basin-scale
temperature and precipitation in a manner that ac-
counts for the forecast uncertainty. Finally, this infor-
mation is fed into ESP to produce probabilistic river
forecasts. This methodology is described in this section.

In addition, the study area and the ranked probability
skill score (RPSS) are described.

a. Study area

The upper Colorado River basin was chosen as the
study area (Fig. 2). Average annual precipitation varies
from about 6 in. in the lower valleys to 50 in. in the
mountainous terrain on the Continental Divide (Daly
et al. 2002). Snow water equivalent ranges from near
zero in the valley bottoms to 25 in. in the mountains.

FIG. 1. Schematic of the daily process conducted at CBRFC to integrate meteorological
information from the MRF model into river forecasts.
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The hydrology of the upper Colorado River basin is
dominated by snowmelt, for which temperature fore-
casts are important to determine the magnitude and
timing of the melt. As with most meteorological fore-
casts, the MRF model forecasts of temperature are
much better than precipitation, particularly at a lead
time of more than 2 or 3 days (Clark and Hay 2004), so
we expect larger improvements here than in rainfall-
dominated river basins.

As modeled in the NWSRFS, the CBRFC has di-
vided the upper Colorado into 27 smaller basins shown
in Fig. 2. ESP is run separately over each of the smaller
basins; downstream basins include water routed from
the basin(s) above. Each of the small basins contains
two or three subbasins divided by elevation. This allows
for input of precipitation and temperature features that
may be small in spatial extent or sensitive to elevation.
ESP requires mean areal temperature (MAT) and
mean areal precipitation (MAP) forecasted time series
for each subbasin.

b. Ranked probability skill score

The RPSS is used to evaluate the probabilistic fore-
casts (Epstein 1969; Murphy 1969, 1971; Hersbach
2000). The continuous version of the ranked probability
score (RPS) upon which the RPSS is based is given by

RPS � �
��

�

�P�x� � Po�x��2 dx, �1�

where P(x) is the forecasted exceedence probability of
variable x (e.g., daily streamflow), and Po(x) is the ob-
served exceedence probability of x. For a single value
such as the observed volume on a particular day, the
observed probability will be either zero or unity. The
RPS is distance sensitive in that it increasingly penalizes
forecasts that contain forecasted probability farther
away from the observed quantity. The RPSS is based
on the RPS and is given by

RPSS � 1 �
RPSf

RPSref
, �2�

where RPSf and RPSref are the forecast being evaluated
and a reference forecast. The reference forecast is often
taken to be climatology. RPSS values are less than or
equal to unity. Positive RPSS values indicate percent
improvement in forecast skill, while negative values in-
dicate that the reference forecast is superior to the fore-
cast being tested.

c. CDC reforecasting experiment

The atmospheric forecast model used in this study is
the 1998 version of the National Centers for Environ-
mental Prediction (NCEP) MRF model [this model was
run by the National Oceanic and Atmospheric Admin-
istration (NOAA) Climate Diagnostics Center (CDC)
as part of their reforecasting experiment; described
here and in Hamill et al. (2004)]. For the CDC experi-
ments the MRF is run with a grid spacing of about 200
km, whereas the CBRFC subbasin areas are irregularly

FIG. 2. CBRFC basins included in the study area. CAMC2 includes all white and red
basins. DIRC2 is the red basin.
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shaped with highly variable spacing about of 20 km.
Therefore a downscaling method [described later and
in Clark and Hay (2004)] is used to relate the MRF
output to the smaller basin scale. Although the atmo-
spheric models currently run at NCEP for weather pre-
diction have much finer resolution, this study takes ad-
vantage of the CDC reforecasts to integrate the ob-
served model error into ESP.

A frozen version of the model is desirable rather than
the most up-to-date version because this allows the es-
timation (and correction) of model biases and model
errors. It also provides a suitably long archive that can
be used to develop statistical relations between the
(coarse resolution) MRF output and precipitation and
temperature at local scales. Hamill et al. (2004) dem-
onstrate that such postprocessing of model output can
result in substantial improvements over operational
forecasts.

Each MRF forecast initialization uses 15 different
initial conditions from which meteorological forecast
ensembles are derived. Only the control, or the best-
guess initial condition, is used here because it was all
that was available when this study began. However, use
of the ensemble mean may result in future improve-
ments. The CDC reforecast dates from 1979 to the
present. Only the portion coinciding with the CBRFC
MAT and MAP calibrations, 1979–98, was used in the
study.

d. Downscaling

A statistical downscaling method is used to translate
the coarse-resolution MRF output to the local scales
important for hydrologic modeling (Clark and Hay
2004). Seven variables from the MRF model are inter-
polated to the center of each subbasin. These variables

FIG. 3. RPSS values for MRF-derived mean areal temperatures for Jan and Jul as a function of lead time and
forecast period.

104 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 6



have previously been found to be important for down-
scaling precipitation and temperature in the contiguous
United States (Clark and Hay 2004). These variables
are 2-m air temperature, precipitation, 700-mb RH, sea
level pressure, 10-m u and v wind components, and
total column precipitable water. The interpolation in-
cludes all MRF grid points within 500 km of the basin,
but grid points are weighted by the inverse of their
distance to the basin so that grid points nearer to a
subbasin will be given more weight.

Unique multivariate linear regression equations were
established for each subbasin, variable (i.e., MAP or
MAT), and 6-h time step [see Clark and Hay (2004) for
more details]. These equations are based on the seven
MRF variables from the three nearest consecutive 12-h
MRF time steps. For example, the MRF data valid on
1200 UTC 24 February, 0000 UTC 25 February, and
1200 UTC 25 February were used to predict the 0000–

0600 UTC MAT on 25 February. This gives 21 predic-
tors (seven variables at three time steps) for each MAT
or MAP. Regression equations are developed using a
forward-screening approach (Clark and Hay 2004). The
coefficients are determined by training the regression
equations on a subset of the data (i.e., 1980–85) and
validated on the remainder of the data. During the vali-
dation process a residual term (i.e., the difference be-
tween observed and predicted) is computed. The stan-
dard deviation of the residuals is computed for each 6-h
period, variable (i.e., MAT or MAP), and basin and
saved for subsequent ensemble creation.

Ensemble traces are generated by stochastically
modeling the error in the regression models:

yiens � ŷ � �, �3�

where ŷ is the value predicted from the multivariate

FIG. 4. RPSS values for MRF-derived mean areal precipitation for Jan and Jul as a function of lead time and
forecast period.
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linear regression, and � is a random number extracted
from a normal distribution with mean of zero and stan-
dard deviation equal to the standard deviation of the
regression residuals [N(0, 	e), computed above]. To
create ensemble forecasts of MAT and MAP values for
input into ESP, this equation is applied as many times
as the number of ensemble traces are desired. For ex-
ample, if 26 ensemble traces are desired, 26 random
numbers are chosen yielding 26 predicted MATs (or
MAPs). Note these predictions have no coherence be-
tween time steps, variables, or basins.

For MAPs a logical regression is done prior to deter-
mining the amount of precipitation to determine the
occurrence of precipitation. If precipitation is chosen to
occur, the amount is computed as the MAT value
would be computed. If not, the amount is zero and the
predicted MAP value is ignored.

Coherence is added through the “Schaake Shuffle”
as described in Clark et al. (2004). The shuffle essen-
tially integrates the coherence in the historical record
into the forecast ensemble. The historical precipitation
and temperature is sorted from lowest to highest. The
precipitation and temperature forecast ensemble mem-
bers are also sorted from lowest to highest. The pre-
cipitation and temperature series are sorted separately.
The sorted historical data are replaced with the sorted
ensemble forecasts, and then resorted by (historical)
year. For example, if the first year in the historical time
series (say 1979) had the fifth highest precipitation and
the 20th highest temperature, then the first ensemble
member would be the ensemble with the fifth highest
precipitation and the 20th highest temperature. This
preserves the observed correlation between precipita-
tion and temperature for the ensemble members (Clark
et al. 2004). The downscaling process results in en-
sembles of MAT and MAP values for each subbasin,

FIG. 5. Schematic representation ESP reforecast construction
from hypothetical MATs and MAPs. Reforecasts here are made
for 1 May between 1980 and 1984.

FIG. 6. Observed flows, simulated flows, and their difference for DIRC2.

TABLE 1. NWSRFS hydrologic model states saved to initialize
ESP reforecasts.

UZTWC Upper-zone tension water
UZFWC Upper-zone free water
LZTWC Lower-zone tension water
LZFPC Lower-zone primary free water
LZFSC Lower-zone supplemental free
ADIMC Additional impervious contents
SNOW Snow model states

106 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 6

Fig 5 and 6 live 4/C



FIG. 7. Historical and MRF ESP forecast MAE for DIRC2. MAE is shown as function of forecast lead
time for all forecasts initialized between Apr and Jul. Median, extreme, and quartile values are shown.

FIG. 8. Historical and MRF ESP forecast MSE for DIRC2. MSE is shown as function of forecast lead
time for all forecasts initialized between Apr and Jul. Median, extreme, and quartile values are shown.

APRIL 2005 W E R N E R E T A L . 107



forecast initialization time between 1 January 1979 and
31 December 1998, and forecast 6-hourly lead time (up
to 14 days). The variance of these ensembles reflects
the observed forecast error in the downscaling process
as well as the model error.

Figures 3 and 4 show the skill scores for the MATs
and MAPs derived from this method as a function of
forecast lead time. MAT skill scores show substantial
improvement (up to 0.7) over climatological MATs
during the first week. The second week shows only
minimal improvement over climatology. RPSS values
are greater for January than for July MATs for all lead
times where positive RPSS values exist. As expected,

the MATs show much higher skill than do the MAPs.
MAP skill scores show only slight improvement (0.2)
for the first 3–4 days after which no skill is added to the
climatological MAPs.

e. ESP reforecasts

The ESP component of the NWSRFS was used to
create reforecasts of the historical streamflow record
(Day 1985). The reforecasting methodology is depicted
graphically in Fig. 5. First, historical MATs and MAPs
were used as input to the NWSRFS to create a simu-
lated record of historical streamflow and model states

FIG. 9. DIRC2 MRF forecast RPSS by year. Forecast initialization time is on the x axis and forecast lead time
is on the y axis. A 10-day running mean has been applied to the forecast intialization times. Superimposed black
curves are the simulated flow for each year.
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for the period 1979–98 (Fig. 5). The model state is de-
fined by the physical states shown in Table 1. Simulated
hydrologic model states were saved for every day in the
historical record. Next, for each reforecast in the his-
torical record, the NWSRFS was initialized using the
simulated model states, and the NWSRFS run forward
in time using the downscaled MAP and MAT as input
(Fig. 5). For comparison, the experiment depicted in
Fig. 5 is repeated using historical MAP/MAT data in
place of the downscaled ensemble inputs—for example,
ensemble inputs to the NWSRFS from 1 to 15 May 1981
are composed of historical data from 1 to 15 May 1979,
1980, 1982, 1983, . . . , 1998 [this is the traditional imple-
mentation of the ESP approach for longer forecast lead
times (Day 1985)]. To assess potential lagged effects of
(potentially improved) inputs, the downscaled inputs
are blended with the historical ensemble inputs on the
14th forecasted day, and all forecasts are run out to 25
days. In the blending period (day 14), the historical
ensemble is linearly given more weight than the MRF
ensemble.

Both sets of ESP reforecasts were made once each
day between 1 January and 31 July for 1979 through
1999. Whereas the CDC MRF reforecasts were made
every 12 h, ESP reforecasts may only be made once per

day initializing at 0000 UTC. A 6-hr time step was used
in ESP.

Traditional ESP forecasts weight the ESP ensemble
member resulting from each year’s historical observa-
tions equal to every other ESP ensemble member. In
doing so, predictability is derived mostly by knowledge
of the initial hydrologic states rather than from a fore-
cast of weather or climate conditions. By using the tra-
ditional ESP forecast as a benchmark for comparison,
we can assess the additional predictability that is ob-
tained by including downscaled MRF forecast informa-
tion.

3. Results

We assume a perfect hydrologic model for purposes
of forecast verification. Here forecasts were verified
against the simulated flow time series instead of the
observed flow time series. This focuses attention on
improvements due to the inclusion of meteorological
forecast information instead of errors in the hydrologic
model itself. Simulated and observed flows are plotted
in Fig. 6 for DIRC2. Their difference is typically an
order of magnitude less than the flow value, indicating
the simulation is very near the observation in that head-

FIG. 10. DIRC2 MRF forecast mean RPSS over all reforecast years. Lead time (days) is
displayed on the y axis and forecast intialization is displayed on the x axis. A 10-day running
mean has been applied. Superimposed black curve is the climatological simulated flow.
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water basin. Outside of small headwater basins such as
DIRC2, water regulation and diversions are wide-
spread and sometimes large in magnitude, meaning that
the perfect model assumption is necessary for forecast
evaluation.

Traditional forecast verification statistics such as
mean absolute error (MAE) and mean squared error
(MSE) may be used for individual elements of a fore-
cast ensemble. The mean and variance of these statis-
tics will allow for rudimentary comparisons between
different ensemble forecast systems. However, these
statistics do not assess probabilistic forecast skill. The
RPSS will be used to assess probabilistic forecast skill.
Here, instead of using climatology as the reference
forecast, we use the traditional ESP method (Day
1985).

Verification results are presented primarily for a
headwater basin, inflow into Dillon reservoir (station
identifier: DIRC2), and for the most downstream basin

in the study area, the Colorado River at Cameo,
CAMC2. DIRC2 is a headwater basin with minimal
water diversions and/or regulations. Other headwater
basins show results similar to DIRC2. By contrast,
CAMC2 is the most downstream segment in the study
area and includes water routed from all the other seg-
ments. CAMC2 also includes many water diversions
and regulations. To compensate for this, simulated flow
was used as the basis for forecast verification.

a. DIRC2

Figures 7 and 8 show the MAE and MSE averaged
over all forecasts between April and July as a function
of forecast lead time. Both MRF and historical refore-
casts show increasing error with increasing lead time.
For lead times up to 16 days the MRF reforecast has
lower MSE and MAE values than for the historical
reforecast. After 16 days the errors are essentially the

FIG. 11. Historical and MRF ESP forecast MAE for CAMC2. MAE is shown as function of forecast lead time
for all forecasts initialized between Apr and Jul. Median, extreme, and quartile values are shown.
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same. Forecast error reduction on the order of 10% is
shown for forecast lead times of 1 to 9 days. These
traditional measures give confidence that the MRF
does in fact add value to the reforecasts. The value
added will be further quantified through probabilistic
forecast verification measures.

Figure 9 shows RPSS values (MRF against historical)
as a function of forecast lead and initialization times for
each reforecasted year. The hydrograph for each year is
superimposed. In general, forecast skill improvements
on the order of 40% are present during rises in the
hydrograph. For example, 1996 shows a maximum
RPSS value of about 60% in late May for forecast lead
times of 10–15 days. This coincides with the final por-
tion of the rising limb of the hydrograph, suggesting the
MRF reforecast added significant information about
precipitation, or more likely, temperature. Other years,
notably 1988 and 1994, showed some negative RPSS
values near the peak flow. In 1988, RPSS values less

than 1.0 are present for lead times around 10 days near
the mid-June peak flow, indicating a probable incorrect
MRF forecast.

Figure 10 shows the climatological hydrograph and
the mean RPSS values as a function of forecast lead and
initialization times. Positive values are present through-
out the entire domain with the exception of lead times
greater than 8 days after about mid-July. RPSS values
of 20%–40% are shown during the rising limb of the
hydrograph for the duration of the MRF model run (14
days). This result indicates substantial and consistent
improvements in forecast skill when the forecast is most
important—before the peak flow occurs.

b. CAMC2

As was done for DIRC2, traditional forecast verifi-
cation measures are applied to individual ensemble
members. Figures 11 and 12 show the forecast MAE

FIG. 12. Historical and MRF ESP forecast MSE for CAMC2. MSE is shown as function of forecast lead time
for all forecasts initialized between Apr and Jul. Median, extreme, and quartile values are shown.
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and MSE averaged over all forecasts between April and
July as a function of lead time. As with DIRC2, the
MRF reforecast error is less than the historical refore-
cast error up through lead times of 16 days. After that,
the forecast errors are nearly equivalent. This gives
confidence that the MRF does in fact add value to the
reforecasts.

Figure 13 shows RPSS values for individual years. A
10-day running mean was applied to the forecast ini-
tialization date. Generally positive RPSS values are
present during the rising limb of the hydrograph for all
years and for all forecast lead times. Most years show a
maximum RPSS value near 0.5, indicating a 50% im-
provement over the historical forecast. These maxi-
mum RPSS values generally occur near lead times of
about one week as well as near the seasonal peak flow.
Negative RPSS values exist for most years, particularly
during the falling limb of the hydrograph, although for

smaller areas than the positive values. Seasonal varia-
tions in RPSS may reflect cases when the forecast is
most sensitive to temperature variations. Strong warm-
ing during the rising limb of the hydrograph will cause
snowmelt, which will increase the rate of rise—the in-
creased skill in the rising limb is likely because tem-
perature forecasts have higher skill than precipitation
forecasts (Figs. 3 and 4). Several years show substantial
increases in forecast skill score out to three weeks.

Figure 14 shows the mean forecast RPSS for CAMC2
over all reforecast years as a function of forecast lead
time and forecast initialization date. A 10-day running
mean was applied to the forecast initialization times for
all forecast lead times. The mean RPSS value during
the April–July forecast period over forecast lead times
up to 21 days is 12%. Strong forecast improvements are
present during the entire rising limb of the hydrograph
between mid-April and early June. Maximum RPSS

FIG. 13. CAMC2 MRF forecast RPSS by year. Forecast initialization time is on the x axis and forecast
lead time is on the y axis. A 10-day running mean has been applied to the forecast intialization times.
Superimposed black curves are the simulated flow for each year.
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values are about 0.4 and predominately occur at lead
times of 3–6 days during the rising limb. Beyond 18
days, RPSS values are near zero, indicating, on aver-
age, that there is no forecast improvement beyond 18
days.

RPSS values were sorted according to the daily
change in flow and plotted in Fig. 15. It is apparent
from this figure that forecast skill is improved more
strongly for situations where the daily flow is increasing
from one day to the next. This again suggests the hy-
drologic states are sensitive to periods where tempera-
tures are warmer than climatology in that the MRF is
generally capable of forecasting with a 1–2-week lead
time.

4. Summary and conclusions

The forecast skill improvements shown here through
RPSS values are substantial. However, the RPS values
were calculated against simulated flow rather than ob-
served flow. Lower forecast skill should be expected
when the RPSS is calculated against the observed flow
and when the hydrologic model error is taken into ac-
count.

The current operational use of ESP does account for
meteorological forecasts through the inclusion of deter-
ministic temperature (days 1–10) and precipitation
forecasts (days 1–3). It is hypothesized that the MRF
ESP forecasts presented in this study may have a higher
skill than the operational ESP forecasts because of the
inclusion of probabilistic information. However, a his-
torical archive of the deterministic station forecasts
used in the operational ESP forecasts would be neces-
sary to quantify the forecast skill of the operational
ESP. Since the meteorological forecasts used in the op-
erational ESP are based on the dynamic NCEP MRF
and human-derived precipitation forecasts, such an ar-
chive of suitable length of record does not currently
exist. A comparison of the operational ESP to the MRF
ESP presented in this study will be addressed in a fu-
ture study.

The increase in forecast skill due to the inclusion of
the MRF forecast is encouraging. In 2004, CBRFC will
have the capability to extend and use this method for
any of its basins on a once per day operational basis.
Similar methods may be applicable for other finer-
resolution numerical weather models (i.e., the Meso
Eta), which may lead to an increase in forecast skill for
shorter lead times.

FIG. 14. CAMC2 MRF forecast mean RPSS over all reforecast years. Lead time (days) is
displayed on the y axis and forecast intialization is displayed on the x axis. A 10-day running
mean has been applied. Superimposed black curve is the climatological simulated flow.
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