"For every complex problem, there is a solution that is

Simple,
Neat,
And
Wrong."

"H. L. Menken"

CBRIC AHIS IROJECI

A cooperative effort between:

<u>Goals</u>

Introduce probabilistic 14 day meteorological forecasts (ensembles) into a river forecast system.

Capture and display the uncertainty.

Verify the process.

Method

Medium Range Forecast Model Downscale to Model Variables

Mean Areal Temperature and Trecipitation Ensembles

EST Model

Probabilistic River Forecasts

Medium Range Forecast (MRF) Model

- Global Meteorological Model
- Many Atmospheric Variables
- Frozen Version
- · Run Daily at CDC
- ~70km Spatial Resolution

MRF Spatial Resolution

WAY TOO LARGE!

Need to Relate to Basin...

Downscaling

- •2m air temp
- Trecipitation
- •700mb Relative Humidity
- ·Sea Level Tressure
- •10m Vector Wind
- •Total Column Precipitable Water

Basin Scale Variables:

- •Mean Areal Temperature
- •Mean Areal Precipitation

Downscaling Method

1. Relates historical MRF scale variable to historical basin scale variables through multivariate linear regression equations. For example:

Basin MAT = $a_1(MRF)$ Trecipitation $+ a_2(MRF)$ wind + ...

- 2. Equations developed in (1) are applied to future MRF forecasts to produce forecasts of basin scale variables.
- 3. Multiple values at a particular time step are generated to create ensembles.

Downscaling Results

Example:

26 Ensembles of MATs for Each Sub-Basin

Downscaling Results

MRF is colder than normal in this case.

EST Method

EST uses initial states from the operational hydrological model along with ensembles of MAT | MAT as input.

Each ensemble is ran through the model.

Ensembles of streamflow are produced.

Ensemble distributions are analyzed and turned into probabilistic forecasts.

Input into EST

MRF derived MAT/MAPs are attached to historical years ("ensembles") and 'fed' to ESP.

Input into EST

MRF derived MAT/MAPs related to the entire year of historical ensembles.

Schematic of Using Ensembles from MRF(day 1-14) As Input to ESF

Ensembles From The 'Frozen' MRF

Ensembles From Historical Data

Information We Will Verify

Project Area: 27 Segments Above Cameo, Colorado River

RUN EST - EACH BASIN - TWO WAYS - EACH DAY

ESP flow time series

Six hour instantaneous flow values at sIX probability levels are saved.

Web Page Example

Probabilities from ESP
(shaded) Using Historical
MAPs and MAPs
Equally Weighted
Plotted with Deterministic
Forecast and Historical
Exceedance Values

Web Page Example

Probabilities from ESP
(shaded) Using Historical
MAPs and MAPs
Equally Weighted and
ESP (lines) Using Maps
And Mats Derived from
The MRF Ensembles
Plotted with Deterministic
Forecast and Historical
Exceedance Values

ESP peak flow

Smaller peaks because MRF is colder for first 14 days causes less melt.

ESP volumes

Smaller volumes through week 4 due to "banking" of water in colder than normal period leads to larger April – July volume.

Future Plans

Use Statistical Weather/Climate GeneratorIn Lieu of Historical Ensembles

Use Experimental Technique to Downscale CPC Forecasts/Apply to Historical and WX/Generator

Use Finer Grid MM5 Forecasts to Produce Downscaled MAPS/MATs

Investigate Downscale Errors – Lumps or Points

Information We Will Save In Relational Table-PRIME Key Fields

Location/Station ID PEDTSEP Type of units for analysis window number of units for analysis window creation date time beginning date time or window carryover date time carryover group probability distribution weighting scheme blend future precipitation initial weight blend future precipitation hours of weighting blend future precipitation final weight blend future precipitation number of days of blending blend future temperature initial weight blend future temperature hours of weighting blend future temperature final weight blend future temperature number of days of blending historical data type historical time step beginning year of historical data ending year of historical data