Raster-based Streamflow Analysis

Richard B. Koehler, Ph.D.

National Weather Service/NOAA

Boulder, CO

Background

- Streamflow patterns
 - Occur on different timescales
 - Include flow volume and timing
 - Show cumulative effect of disturbances
- Multiple existing methods (170+ indices)
 - Many correlated or redundant
 - Adequate for volume (composition)
 - Weak for timing (configuration)
- Large daily datasets exist

Study sites

Raster gridded time series

Colorado River example

Colorado River at Lees Ferry, AZ linear hydrograph

Colorado River example

Colorado River at Lees Ferry, AZ raster hydrograph

Autocorrelation

Linear vs. grid-based lag scheme

 $\Delta t = 1 \text{ day lag}$

 $\Delta t = 1$ year lag

 $\Delta t = 1$ year and 1 day lag

Correlograms

Daily

San Pedro River at Charleston, AZ

1936 - 2001

Yearly

Correlograms

Artificial flow examples

Random daily flow

Random yearly flow

Artificial flow examples, part 2

Exactly identical increasing yearly flow

Correlation 40 -0.75 Substitute -0.50 -0.25 -0.25 -0.25

0

Lag in "days"

100

150

-150

-100

-50

Random fluctuating daily flow

San Miguel River at Placerville, CO

Control site for Upper Colorado River Basin

Raster hydrograph Grid correlogram

Palisades Reservoir

End of month storage converted to streamflow

Raster hydrograph Grid correlogram

Snake River at Heise, ID

Downstream from Palisades Reservoir

Raster hydrograph

(1911 through 1951)

Grid correlograms

(1960 through 2000)

Snake River at Irwin, ID

1956 - 2002

Observed hydrograph and gird correlogram

Raster hydrograph Grid correlogram

Snake River at Irwin, ID

1956 - 2002

Adjusted hydrograph and gird correlogram

Raster hydrograph Grid correlogram

Colorado River at Lees Ferry, AZ

Downstream from Glen Canyon Dam

Raster hydrograph

(1930 - 1960)

Grid correlograms

(1970 - 2000)

Climate applications

Temporal and spatial analysis

Climate applications

Other applications

Summary

- Raster-based approach
 - Greater visualization
 - Raster hydrograph
 - Analyze temporal streamflow change
 - Grid correlogram
- Verify if calibration dataset is more "natural"
 - New approach to identify temporal variability
 - Enhance and replicate streamflow conditions