Real-time Verification of Short-term Probabilistic Streamflow Forecasts

Is it possible?

Bisher Imam University of California, Irvine

> Holly Hartmann University of Arizona

Towards a New AHPS (NRC, 2006)

Limitation and Research Needs for ESP

"The AHPS approach to quantifying uncertainties in operational forecasts must be articulated"

Limitations and Research Needs for Verification in the NWSRFS

"Unlike meteorological forecasts, little is known about hydrologic forecasts and actual river forecast skills"

- Identify suitable measures for real-time ESP forecast verification
- Propose operational procedure for ESP forecast verification
- Propose examples of possible screens that can be integrated into the system

Focus on Forecasters

Examples Site

Le Sueur River Near Rapidan MN [RPDM5] (USGS station 05320500)

Forecasting Period and Windows

Hindcasts: 1953-1993→ 45 Years Ensembles:1952-1953 → 46 Ensembles

Procedure

Observed

Simulations

Ensemble

NWSRFS System

pred obs:

0.97694916

0.39462710

0.49237606

0.12007920

0.94907976

0.32115485

0.64352206 0.79504735

0.89420495

0.32340857

0.05380586

0.65498118

0.33251075 0.02602262

0.56759791

0.94141776

0.14300034

0.80215748

Attribute Diagram

0.4 0.6 0.8 1.0

R Statistical Package

Exploratory Approaches; The Ensemble Plots

Multiple Forecasts

Multiple Forecasts

Forecast Day

Forecast Day

6

Forecast Day

2

. .

Forecast Day

1987

10

Forecast Day

1990

52 14

4

1996

8 10 12

Forecast Day

14

Consistency: Error and Spread

Normalized Error/Spread Plot

Larger Data Set: All Ensembles Considered

Verifying Data Augmentation: Multiple Days

What is a reasonable forecast variable

CR Factorization LBR Factorization

 $h(f,o) = y(o \mid f) p(f)$ $h(f,o) = r(f \mid o)t(o)$

$$f_i(q^*) = P\left\{Q_i \le q^* \mid \alpha_i\right\}$$

where f_i is the probability forecast, and α_i is the initial condition. observation variable $o_i(q^*)$ as

$$o_i(q^*) = \begin{cases} 1 & \text{if } Q_i \le q^* \\ 0 & \text{if } Q_i > q^* \end{cases}$$

Reliability/Resolution Diagram

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Random Forecast

Overall Perfromance Measu	res	
Brier Score (BS)	=	0.3306
Brier Score - Baseline	=	0.2497
Skill Score	=	-0.324
Reliability	=	0.08339
Resolution	=	0.0025
Uncertaintity	=	0.2497

Reliability

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Real Forecast (Augmented 15 Days)

The Attribute Diagram

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Attribute Diagram for Random Forecast

Thresholds and Probability Range Selection

All thresholds together (Also applicable to individual thresholds)

Threshold = 0 Always make a

	Observation				
		р	n		
Forecast	Y	True Positive	False Positive		
	N	False Negative	True Negati∨e		
Total		Р	Ν		

False Positive rate=FP/N = False Alarm Rate True Positive Rate= TP/P = Hit Rate Precision = TP/(TP+FP) = Positive Predictive value Accuracy= (TP+TN)/(P+N) Specificity = TN/(FP+TN)

Combining Information

BS-Decomposition

Non-exceedence Threhold:0.7 Overall Perfromance: Observation Brier Score (BS) = 0.1657 Brier Score - Baseline = 0.2102 Skill Score 0.2113 = Reliability = 0.0187 Resolution = 0.0631 Uncertaintity = 0.2102 Overall Perfromance: Historical Simulation Brier Score (BS) 0.06388 = 0.2102 Brier Score - Baseline = 0.696 Skill Score = Reliability 0.001809 = Resolution 0.1481 = Uncertaintity 0.2102 =

ROC Plot Historical Simulation

BS-Decomposition

Attribute Diagram

Screen Shot (15 days)

ROC Plot Historical Simulation

BS-Decomposition

Non-exceedence Threshold:0.7 Overall Perfromance: Observation 0.1657 Brier Score (BS) Brier Score - Baseline 0.2102 = Skill Score 0.2113 Reliability 0.0187 -Resolution 0.0631 Uncertaintity = 0.2102 Overall Perfromance: Historical Simulation Brier Score (BS) 0.06388 _ 0.2102 Brier Score - Baseline = Skill Score 0.696 _ Reliability 0.001809 -Resolution = 0.1481 Uncertaintity = 0.2102

Attribute Diagram

ROC Plot Observation

BS-Decomposition

For smaller Data Set

ROC Plot Observation

BS-Decomposition

0.6

0.8

1.0

1.0

Other Measures (Bradley 2004, Hashino, 2003)

Measured Quality	Base dist.	Measure	Definition (Murphy 1996 and 1997)	Formulae (Based on Bradley (2003)	
Bias Unconditional	p(f) t(o)	ME	Mean error. Difference between the mean forecast probability and the <u>climatological</u> probability of the specific threshold.	$M\!E = \mu_f - \mu_o$	
Accuracy	b(f.g)	MSE	Mean square error. Overall degree to which forecast corresponds with observations.	$MSE = (\sigma_{f}^{2} + \mu_{f}^{2}) + \mu_{o}(1 - 2\mu_{f o=1})$	
Skill or Relative Accuracy	b(<u>f.o</u>)	SSMSE	A normalized measure of accuracy. Also known as the Brier Skill Score.	$SS_{MSE} = 1 - \frac{(\sigma_f^2 + \mu_f^2) + \mu_o(1 = 2\mu_{f o=1})}{\sigma_o^2}$	
Association	b(f.e)	$ ho_{f,o}$	A measure of association between forecasts and observations. Potential skill of the perfectly reliable forecast (See definition of reliability)	$\rho_{f,\rho} = \frac{\operatorname{cov}(f, o)}{\sigma_f \ \sigma_f} = \sqrt{\frac{\mu_o}{1 - \mu_o}} \left(\frac{\mu_{f o-1} - \mu_f}{\sigma_f} \right)$	
Reliability/ Type 1 Conditional Bias)	y(e_f) P(f) CR	REL	Degree of correspondence between the observations associated with a given forecast and the <u>forecastAlso</u> known as Type 1 conditional bias. In meteorology it is also known as Calibration	$REL = E_f \left(\mu_{o f} - f\right)^2$	
Resolution)(e]f) P(f)	RES	Degree of spread of observations around the conditional mean of observation for a given forecast.	$RES = E_f (\mu_{o f} - \mu_o)^2$	
Sharpness	₽(f)	σ_{f}^{2}	Degree to which probability forecasts approach 0 and 1.	σ_f^2	
Concurrence	Y(e↓f) ₽(f)	MSECR SSCR	Concurrence between reliability and resolution	$MSE_{CR} = \sigma_o^2 - REL - RES$ $SS_{CR} = 1 - \frac{MSE_{CR}}{\sigma_o^2} = \frac{RES}{\sigma_o^2} - \frac{REL}{\sigma_o^2}$	
Discrimination	r(f.].o) t(o) P(f)	DIS	Degree of deviation between the conditional mean for forecast from the mean of forecast	$DIS = E_o (\mu_{f o} - \mu_f)^2$ $DIS = (1 - \mu_o)(\mu_{f o} - \mu_f)^2$ $+ \mu_o (\mu_{f o=1} - \mu_f)^2$	
Type 2 conditional bias	r(f_0) t(0)	B2	Degree of correspondence between the mean of forecast conditioned by observation and the mean of observations.	$B2 = E_o (\mu_{f o} - o)^2$	
Relative Type 2	r(f]_0) t(0)	MSECR SSCR	Concurrence between discrimination and B2	$MSE_{LBR} = \sigma_f^2 + B2 - DIS$ $SS_{LBR} = 1 - \frac{\sigma_f^2}{\sigma_o^2} + \frac{MSE_{LBR}}{\sigma_o^2} - \frac{DIS}{\sigma_o^2}$	

NWSRFS

Forecasting is a Demanding Task

		Get e-mail about of from RES Operator	changes rs (15 m	in reservoir op in)		ons
		Obtain 7 Days Fore (Mostly MOSS) SHE		Max Min		
				1	Twice	e a day
				Collected in	Datab	ase
24 hrs		Observed Temperature Automated		QC by CH thi process	rough	automated
QPF Adjustment				Runs hourly		
Reservoirs 4 Forecasts a day				Observed Ma from 6 Hourl		
Forecast Groups						Get data for past day o length
Cary Over Groups			Use Da	ata Ingestion T	ool	Mostly Gauges
Load selection Start					Ţ	GOES, ALERT
Blend Period	I. Preparation		Western RFCs do RADAR		t use	
Sent to ASCII Files	Morning Time (6-8AM)		RADAR	`	1.00	k at stations
Change MOD						k stations as
Pating Curves		QC Precipitation	C Precipitation Mountain W			
Notes IV. IFP_MAP				ERN REGION	For	ce it to be used
Reservoir Issues	asting (CNRFC)		APPLIC	CATION)		mate value for
allow decision makers to think					<u> </u>	ions that are marked
about Info Forecast					kno	isions require wledge of individual
SHEF Encoded product					gau	ges
addressed to specific users				ata Archived		
River Guidance Web Products		Stream flow data		nated Acquisit	ion	
			-(Flat F			
		HAZ Prepares QPF	s Earl	ly Morning		
		R	ating Cu	urves		
		downloaded dail Rating Curves updated 2wice a				
		Rating Curves	poateo	zwice a week		
Segment Command 5 day volume for 20 days V. ESP	II. Process data	ple and fast omated ate MAP/MAT cess MAP and MAT for				
Generated automatically		ire week				
Using Scripts						

Wells, 2005. The objective of administrative verification of deterministic river stage forecasts is to determine:

1.How does the performance of the actual forecastscompare to the performance of persistence forecasts?2.How does the forecast performance change with lead time3.How does the forecast skill change with time

For ESP, No archive of forecasts exist because of:
(1)Recent implementation and continuing evolution of ESP procedures at RFCs
(2)Lack of archival procedures of actual ESP forecasts in their numeric (ensemble) format.

Towards a New AHPA (NRC, 2006)

While the Inclusion of a verification subcomponent in AHPS NWSRFS is recommended, there is a pressing need for a long-term strategy and maintenance of forecast archive for future verification and NWSRFS evaluation

Possible Structure

Center for Hydrc 🦯 🚍 🌧