San Juan Basin

San Juan-Pagosa Springs(PSPC2)

San Juan-Pagosa Springs(PSPC2)

- inputs
- •In reality the 3 areas (upper, middle and lower) are represented (simulated) by only 3 points
- •The inputs our model needs for calibrations and operations (at these 3 points) are:
 - precipitation
 - •temperature
 - freezing level

For San Juan River at Pagosa Springs (PSPC2)

PSPC2 upper area Elevation = 11437 Area=60nm

PSPC2 middle area Elevation = 9774 Area=152nm

PSPC2 lower area Elevation = 7844 Area=88nm

Calibrations/Simulations - Precipitation

- •Each area (upper, middle and lower) MAP is built using precipitation stations that (hopefully) have similar characteristics to that area
- •For the PSPC2
 - Upper area Upper San Juan.4, Lily Pond.
 - 35, Middle Creek.36
 - •Middle area Upper San Juan.31, Lily Pond.
 - 31, Middle Creek.32
 - •Lower area Pagosa Springs 1.06
- •These weights were chosen to guarantee water balance in each area. The water balance in each area was calculated using the PRISM sets

San Juan-Pagosa Springs(PSPC2)

Calibrations/Simulations - Temperature

- •Nearby stations (whose climatology is known) area used to calculate the temperature at the mid-point elevation of the area (whose climatologies are calculated using the climatology of the nearby stations)
- •Temperature is calculated by using the difference in station and area climatology

- Inputs
- Precipitation and temperature are calculated every six hours at each area within the basin
 - •30 years
 - Used to calibrate hydrologic models
- Operationally done in a similar way
 - •Ensures our forecasts will have similar quality/characteristics to 30 years of calibration
- For the San Juan at Pagosa Springs this is done for the upper, middle and lower areas

- Models
- •A snow model (accumulates/ablates snow) is run for each area in the basin
- •A soil moisture model (controls amount of water from the snow model which is retained in the soil/evaporates or ends up in the stream) is run for each area
 - Evaporation is a calibrated amount :
 - •E=P-Q

- 456 basins
- 1130 areas (2-3 per basin)
- 85 reservoirs

- Reservoirs
- •Reservoir modeling is difficult as they are not physically based. However, we calibrate the reservoir models assuming two different modes:
 - Irrigation (use average releases)
 - Spillway/passflow
- Operationally we do the following:
 - Assume the current release
 - Input a schedule
 - Allow the spill/passflow rules

Adjustments to Flow

- Unregulated flow=
 Observed flow + Diversions (measured) + Storage
- •Natural flow= Unregulated flow + Consumptive Use
- •Consumptive use (in basin irrigation) can only be estimated
- •In our simulations we simulate natural flow but subtract out the consumptive use so the output is always unregulated flow
- •So:
 - We simulate "natural flow"
 - •We remove the in-basin irrigation (consumptive use)
 - •This is the simulated unregulated flow. It simulates the actual flow plus the measured diversions (adjusted flow)
- Operational considerations
 - Observed flow=Unregulated flow-Diversions-Storage

