CBRFC Water Supply Forecasting: What Does the Future Hold?

Kevin Werner

NWS Colorado Basin River Forecast Center

CBRFC Stakeholder Forum July 31, 2012

Outline

e Past: A Brief Recap

e Need for Change: Stakeholders, Science, and Verification

e Future: Perspectives and Direction Science and Stakeholders

atistical Forecasting

Statistical Regression Equations

Primary NOAA/RFC forecast method from 1940's to mid 1990's.

Primary NRCS/NWCC forecast method

Historical Relationships between flow, snow, & precipitation (1971-2000+)

Tied to a fixed runoff period (inflexible)

nsemble Simulation Model Forecasting

A component of a continuous conceptual model (NWSRFS)

Continuous *real time* inputs (temperature, precipitation, forecasts)

Accounts for soil moisture states (SAC-SMA) - drives runoff efficiency

Builds and melts snowpack (Snow-17) – output feeds SAC-SMA

Flexible run date, forecast period, forecast parameters.

Evolving toward ESP as primary forecast tool at NOAA/RFCs

Past Output

- ecast attributes:
- Target: seasonal volume (typically April-July)
- Frequency: monthly or semi-monthly during winter spring
- Probabilities: 10,50,90% forecast exceedence
- Format: email, publication, and web site
- Other tools: online toolsets
- Coordination with NRCS

ine iveed to Unange

practice:

ot conducive to more frequent (daily/weekly) updates ot conducive to ensemble based forecasts

oordination and manual combination does not systematically add kill (see verification)

orecast process not repeatable

spite of some success, integration of new science is difficult

practice should:

everage NOAA/NWS expertise with weather and climate predicti everage CBRFC daily forecast operations

everage CBRFC forecaster expertise

rovide short to long term forecast information including ensemble

ase ability to integrate new science, methodology, and technolog

1983 Forecast Assessment

tatistical models are deficient in several aspects:

I. The forecasts are for monthly or seasonal volumes and do not provide day-to-day values or allow frequent updates.

The models do a poor job of predicting flows for extreme conditions that have not been observed historically.

3. The models do not account for large variations from normal in both temperature and precipitation that may occur subsequent to the date of the forecast.

4. These techniques are not amenable to easy changes (i.e., additiona

Forecast verification

- y Questions:
- How accurate is each forecast tool?
- How reliable is each forecast tool?
- How do these answers change over timory or space?

verification Strategy

Systemic answers equire large number of forecasts

Jse reforecasts to nave a large sample size

Reforecasts use current calibrations to simulate past forecasts

Do not (yet) incorporate weather

ivietrics explained

uracy: astved

ability:
onship of ved to
sts

50% Forecast Accuracy

50% Forecast Accuracy

Forecast Reliability

Forecast Reliability

Ok; But how do reliability of fore system vary over points?

|A| + |B| + |C| + Gives a measure total reliability.

Across Lead Times

veather Forecasts vvIII Help Even More..

er et al, 2004 ared ESP asts with 14 of probabilistic ner inputs with ased on pure tology. Showed SP with ner

erformed ESP

0.0

verification Summary

Across all points for January 1:

ESP significantly more accurate than SWS

SWS slightly more reliable than ESP

Across all points for April 1:

ESP generally more accurate than SWS

SWS slightly more reliable than ESP

Inclusion of weather probabilistic weather forecast improves ESP accuracy by 10-40% during melt season.

New Direction (NOAA/NVV5)

NWS RFCs are no longer coordinating forecast numbers with NRCS (informal coordination is important and will continue). For CBRFC stakeholders in WY13, there will be two different forecasts available.

NWS RFCs are moving toward:

Daily updating ESP forecasts

Routine integration of weather and climate forecasts

Full season and residual forecasts

Short to long lead ensemble forecasts

Verification and reforecasts to quantitatively assess forecast

Backward compatibility for key forecast products (e.g. emaile

New Direction (CBRFC)

does this mean for CBRFC?

Continuation of text forecast products to support water management

Discontinuation of water supply forecast publication

Redeployment of forecast expertise from concentrated effort during first week of month toward more continual monitoring and adjustment of forecast skill.

Key benefits:

Daily updating forecasts

Quick turn-around on monthly forecasts

Documentation of forecaster modifications to ESP

Access to ESP traces

Overhaul of Peak Flow Forecasts

Note: We don't expect forecast skill to increase based on this direction alone

```
TTAA00 KSTR DDHHMM
:National Weather Service, Colorado Basin River Forecast Center, SLC, Utah
                          April 03, 2012
:April final Forecast
"product_issuance=final"
.B SLC 120801 M DH24/DC1204031800/DVM04/QCVFEZ5
:FLOOD CONTROL RESERVOIR UNREGULATED INFLOW FORECASTS
:1 April through 31 July 2012 (units:: 1000's Acre-Feet)
:Reservoir
                     Probable
LKSA3:Lake Mead
GLDA3:Lake Powell
NVRN5: Navajo
BMDC2:Blue Mesa Res
                          330
GRNU1:Flaming Gorge
:Other Reservoir Unregulated Inflow Forecasts
B SLC 120430 M DH24/DC1204031800/QCMFEZ5/DRE+1/QCMFEZ5/DRE+2/QCMFEZ5
                              feb mar %Avg
GLDA3:Lake Powell
                              343 560
                                        84%: 800/ 1050/ 1150/ 3500/: 49%
GBRW4:Fontenelle
                                   64 122%: 90/ 135/ 280/ 665/:
GRNU1:Flaming Gorge
                          45
                     38
                              47 104 102%: 135/ 195/
                                                         315/
BMDC2:Blue Mesa
                                   40
                                       111%: 77/ 102/
                                                         106/
MPSC2:Morrow Point
                              22 43 107%: 88/ 112/ 112/ 360/: 49%
CLSC2:Crystal
                                       106%:
                                               99/
                                                    125/
TPIC2:Taylor Park
                     4.1 3.8 3.9 5.8 131%: 10/ 18/
 CRC2:Vallecito
                     5.3 4.7 4.3 12.3 143%: 24/
                                                     47/
```


No Data
Salt
Lake
70
70-90
90-110
110-130
>130

Sevier

Lake
Powell

Virgin

San Juan

Question

do you currently access CBRFC water supply forecasts?

ervice, Colorado Basin River Forecast Center, SLC, Utah

st April 03, 2012

Inal"

//DC1204031800/DVM04/QCVFEZ5

RVOIR UNREGULATED INFLOW FORECASTS

July 2012 (units:: 1000's Acre-Feet)

Most

Probable
: 3655
: 3500
: 445
: 330
: 810

egulated Inflow Forecasts

/DC1204031800/QCMFEZ5/DRE+1/QCMFEZ5/DRE+2/QCMFEZ5

VI DD.	,									
		0bs			Fore	ecast	Outlook			
dec	jan	feb	mar	%Avg	apr	may	jun	apr-jul	%Avg	
363	356	343	560	84%:	800/	1050/	1150/	3500/:	49%	
35	32	30	64	122%:	90/	135/	280/	665/:	92%	
38	45	47	104	102%:	135/	195/	315/	810/:	83%	
24	22	21	40	111%:	77/	102/	106/	330/:	49%	
25	23	22	43	107%:	88/	112/	112/	360/:	49%	
28	27	26	49	106%:	99/	125/	125/	400/:	48%	
4.1	3.8	3.9	5.8	131%:	10/	18/	17/	52/:	53%	
5.3	4.7	4.3	12.3	143%:	24/	47/	43/	130/:	67%	
10 1	17 7	10 6	7.4	ខ្លួក៖	135/	165/	115/	115/	619	

ail / Text Product

July 24-Month Study Date: July 10, 2012

rces Group, Salt Lake City

River Annual Operating Plan (AOP) Recipients

low ited) et)	Percent of Average (%)	July 9 Midnight Elevation (feet)	Reservoir Storage (acre-feet)		
)	63	6502.32	317,000		
)	48	6023.53	3,106,000		
)	17	7474.48	467,000		
)	9	6050.04	1.226.000		

Website

Examples

Water Supply Forecasts for HLEC1 1 new message from Klau

Example Log:

1/25 – Forecast problem

2/I – SWS forecast is 600

3/I – ESP biased high acc

bias statistics; official fore

lower.

3/2 – Snow update (forec

increase)

3/10 - Major QPF event

Download forecasts, trace

Examples

COLORADO - LAKE GRANBY, GRANBY, NR (GBYC2) Back

ase contact CBRFC with questions or for clarification.

Number of Forecasts: 25

ESF	RAW MODEL	GUIDANCE (Exce	edence kaf)		OFFICIAL COORDINATED FORECAST (Exceedence kat				
Forecast Period	90%	70%	50%	30%	10%	Date Issused	Forecast Period	90%	50%
Jul-Jul 2012	9.8	9.9	10.2	11.0	12.8				
Jun26-Jul 2012	12.2	12.3	12.6	13.2	14.8				
Jun19-Jul 2012	16.5	16.6	17.0	18.1	19.4				
Jun13-Jul 2012	23	23	24	25	27				
Jun6-Jul 2012	33	34	35	37	43	6/1/2012	Jun-Jul 2012	31	45
Jun-Jul 2012	42	43	45	49	59	6/1/2012	Jun-Jul 2012	31	45
May22-Jul 2012	60	63	66	75	88				
May15-Jul 2012	64	68	71	81	97				
May8-Jul 2012	72	79	87	92	109				
May-Jul 2012	80	90	100	106	127				
Apr24-Jul 2012	105	115	123	134	155				
Apr15-Jul 2012	110	119	130	148	183				
Apr10-Jul 2012	102	120	131	145	177				
Apr4-Jul 2012	111	130	142	161	193	4/1/2012	Apr-Jul 2012	102	150
Apr-Jul 2012	119	144	153	170	205	4/1/2012	Apr-Jul 2012	102	150
Apr-Jul 2012	122	145	157	173	210				
Apr-Jul 2012	132	152	172	182	215				
Apr-Jul 2012	134	157	180	193	230				
Apr-Jul 2012	134	161	184	195	245				
Apr-Jul 2012	132	162	188	205	245	3/1/2012	Apr-Jul 2012	123	180
Apr-Jul 2012	129	154	173	198	235				
Apr-Jul 2012	130	156	176	195	265				
Apr-Jul 2012	121	148	171	198	265				
Apr-Jul 2012	136	158	182	210	280	2/1/2012	Apr-Jul 2012	120	180
Apr-Jul 2012	132	162	181	205	280				

More examples: Cass?

DISCUSSION

ur input is key!

- Does paradigm described meet your needs? Why or why not?
- QPF vs no QPF?
- Forecast horizon?
- Seasonality of issuance?