Evaluating Forecasts in Reservoir Operations: The Role of Reforecast Products in Examining Extremes

Rebecca Guihan
Dr. Austin Polebitski, Dr. Richard Palmer

February 26, 2014

UMassAmherst NOAA SARP

UMassAmherst NOAA SARP

UMassAmherst NOAA SARP

<u>UMassAmherst</u>

Project Goals

Demonstrate the potential usefulness of climate forecasts and create an appropriate framework for their application

- Co-generate knowledge concerning system operations between researchers and water managers
- Generate ESP streamflow using reforecasts at partner locations
- Evaluate skill of GFS and CFSv2 and corresponding streamflow in the context of decision making
- Disseminate data, case studies, and recommendations to the broader water community

Project Partners - Case Studies

Salt Lake City
Parley's System:
Drinking Water, Flood Control

Snohomish County PUD Jackson Hydropower System: Multi-purpose

Project Partners - Case Studies

PacifiCorps Bear Lake: Irrigation Supply, Flood Control

Dallas Water Utilities System:

Drinking Water

<u>UMassAmherst</u>

Project Goals

Demonstrate the potential usefulness of climate forecasts and create an appropriate framework for their application

- Co-generate knowledge concerning system operations between researchers and water managers
- Generate ESP streamflow using reforecasts at partner locations
- Evaluate skill of GFS and CFSv2 and corresponding streamflow in the context of decision making
- Disseminate data, case studies, and recommendations to the broader water community

Workshop

Partner	Hydropower	Water Supply	Environmental Flows
Dallas	None	 Firm yield Frequency of instituting voluntary or mandatory restrictions Total revenues generated Minimum storages in reservoirs 	None
PacifiCorp Bear Lake	 Energy production lost relative to baseline 	 Volume of water provided to irrigation Annual allocation of water Accuracy of forecast of water to be allocated Irrigation supply lost 	None
Salt Lake City	• None	 Appropriate storage level at the beginning of water supply season Balancing water sources and supplies 	 Cannot divert into pipeline until >5 cfs at Lamb's Diversion
SnoPUD	 Mega-watts hours produced per year, Total avoided costs from other purchases Annual energy value 	Water provided to EverettNeed to implement curtailments	 Number of times fish flows are unmet Minimizing peak releases that harm fish Provide "flushing flows" to move fish down stream

Department of Civil and Environmental Engineering

Partner	Hourly/Daily	Weekly	Monthly
PacifiCorp Bear Lake	• None	 Flood Control Decisions 	Flood Control DecisionsIrrigation AllocationsDrought
Salt Lake City	Flood Mitigation	Flood MitigationDrinking WaterDeliveries	 Flood Mitigation
SnoPUD	Hydropower GenerationChannel forming flows	 Drinking Water Hydropower Scheduling Flood Control Environmental Flows 	Refill/Drafting Rates

<u>UMassAmherst</u>

Project Goals

Demonstrate the potential usefulness of climate forecasts and create an appropriate framework for their application

- Co-generate knowledge concerning system operations between researchers and water managers
- Generate ESP streamflow using reforecasts at partner locations
- Evaluate skill of GFS and CFSv2 and corresponding streamflow in the context of decision making
- Disseminate data, case studies, and recommendations to the broader water community

Types of Streamflow Forecasts Used

Type of Forecast	Forcings	Streamflow
ESP/Climatology	Historic	Climatology
HEFS	GEFS and Climatology	GEFS and Climatology
HEFS	GEFS and CFSv2	GEFS and CFSv2

- ESP Ensemble Streamflow Prediction
- HEFS Hydrologic Ensemble Forecast System
- CFS- Climate Forecast System
- GEFS Global Ensemble Forecast System

Types of Streamflow Forecasts Used

- ESP Ensemble Streamflow Prediction
- HEFS Hydrologic Ensemble Forecast System
- CFS- Climate Forecast System
- GEFS Global Ensemble Forecast System

Types of Streamflow Forecasts Used

- ESP Ensemble Streamflow Prediction
- HEFS Hydrologic Ensemble Forecast System
- CFS- Climate Forecast System
- GEFS Global Ensemble Forecast System

CFS Forecast vs. Observed Temperature (°C)

CFS Correlations by Lead Day

Snowpack as a Crude Forecasting Method: SLC

Annual April-July Inflow Volumes - Salt Lake City (1984-2010)

Additional skill when using ESP forecast

Annual April-July Inflow Volumes - Dell ESP (1985-2010)

Additional skill when using HEFS forecast

Annual April-July Inflow Volumes - Dell HEFS (1985-2010)

HEFS DELL

Summed April-July HEFS Inflow (Little Dell)

Means of ESP and HEFS (kaf)

<u>UMassAmherst</u>

Project Goals

Demonstrate the potential usefulness of climate forecasts and create an appropriate framework for their application

- Co-generate knowledge concerning system operations between researchers and water managers
- Generate ESP streamflow using reforecasts at partner locations
- Evaluate skill of GFS and CFSv2 and corresponding streamflow in the context of decision making
- Disseminate data, case studies, and recommendations to the broader water community

Proof of Concept - Method

Proof of Concept - Results

- Use DSS to evaluate revenue gains in three hydrologically different years
- Compare the use of forecast information against 'perfect knowledge'

	Annual Inflow	Average Energy	Standard Deviation
	(AF)	Price	In Energy Prices
2001-2002	697,800	\$25.93	\$13.44
2002-2003	522,489	\$31.07	\$13.29
2003-2004	554,374	\$39.49	\$6.70

<u>UMassAmherst</u>

Proof of Concept - Results

Proof of Concept - Results

<u>UMassAmherst</u>

Current Operations and Forecast Use

Current Operations and Forecast Use

Incorporating Forecasts

Simulation Model – Stella or R

- Simulates system operations
- Calculates how water is routed through the system

Incorporating ESP Forecasts: Parley's System

Operated by Salt Lake City

- Releases to supply drinking water
- Releases for flood management

Incorporating Forecasts: Salt Lake City

For today's example:

- ESP traces used as inflow to the model
- 2. Static Rule Curve based on the median historic storage determines how releases are made

Potential Benefits of Using Forecast

Critical Period	Concern	Value
Low inflow or low pool elevation	Not providing enough water	How much releases should be reduced
High inflows or high pool elevation	Spilling, flooding	Chance of spilling, potential peak inflows

<u>UMassAmherst</u>

ESP DELL

Summed April-July ESP Inflow (Little Dell)

Example of Results: High Flow Year

Peak Inflows 1997

ESP Streamflow – High Inflow Year

ESP Streamflow – Low Inflow Year

January ESP – Operational Output (af)

April ESP - Operational Output (af)

January ESP - Operational Output (af)

April ESP - Operational Output (af)

Iterative Process Getting New Tech Into Ops

<u>UMassAmherst</u>

Iterative Process Getting New Tech Into Ops

Final Thoughts and Future Work

- ESP and HEFS/CFSv2 traces applied in operational framework will provide benefits,
 - we are finishing evaluating at what scales and for what decisions, final evaluations completed by September
- Generating hindcast data for evaluating system in existing framework is iterative process
 - generating data, processing through system, trouble shooting...
- Matching End User needs (update frequency, forecast length, etc.) must be priority in beginning of process

Acknowledgements

- NOAA SARP Nancy Beller-Simms
- Advisors: Dr. Austin Polebitski, Dr. Richard Palmer

- Dr. Andy Wood
- Case Study Partners: Bruce Meaker, Connely Baldwin, Jeff Niermeyer, Tracie Kirkham, Denis Qualls

Thank You!

Questions?

Project Goals

- Analyze the quality of climate forecast products,
- Work with study partners to develop ways to use products in reservoir operations.

Future Work

- Quantitatively compare the results against perfect forecast information
- Is this a useful seasonal prediction tool?
 - Does including the GEFS forecast improve the regular ESP forecast?
 - What benefits do CFS model provide?

CONCLUSION: Preliminary analysis of these data suggest that climatological skill between the ESP and CFS are similar. More work is needed as the data are still very new.

Example of Results: High Flow Year

April 1, 1997 ESP Releases Forecast

Example of Results: High Flow Year

*9/30 expected releases would exceed 1500 cfs for an average of 19 days

ESP LAMB

Summed April-July ESP Inflow (Lamb)

HEFS LAMB

Summed April-July HEFS Inflow (Lamb)

<u>UMassAmherst</u>

ESP DELL

Summed April-July ESP Inflow (Little Dell)

Example of Results: High Flow Year

Peak Inflows 1997

Example of Results: High Flow Year

Example of Results: Low Flow Year

Example of Results: High Flow Year

Date