NOAA's Colorado Basin River Forecast Center

Incorporation of a Stochastic Weather Generator to Further Inform Ensemble Streamflow Prediction in the Colorado River Basin

W. Paul Miller, Service Coordination Hydrologist

Upper Colorado River Basin Water Forum

November 2 – 3, 2016

Grand Junction, CO – Colorado Mesa University

Special Thanks To...


- Andrew Verdin
 - University of Colorado
 - Development of
 Stochastic Weather
 Generator
 - Ph. D. examined application of SWG in Argentina

- Janelle Hakala
 - 2016 NOAA Hollings
 Scholar
 - Senior at the University of North Dakota
 - Volunteer position with Grand Forks, ND
 Weather Forecast Office

Who Are We?

- Part of NOAA NWS, one of 13 RFCs nationwide
- An operational field office located in Salt Lake City, UT
- Highly collaborative, reliant on partners and data
 - All about decision-support!

Who We Are

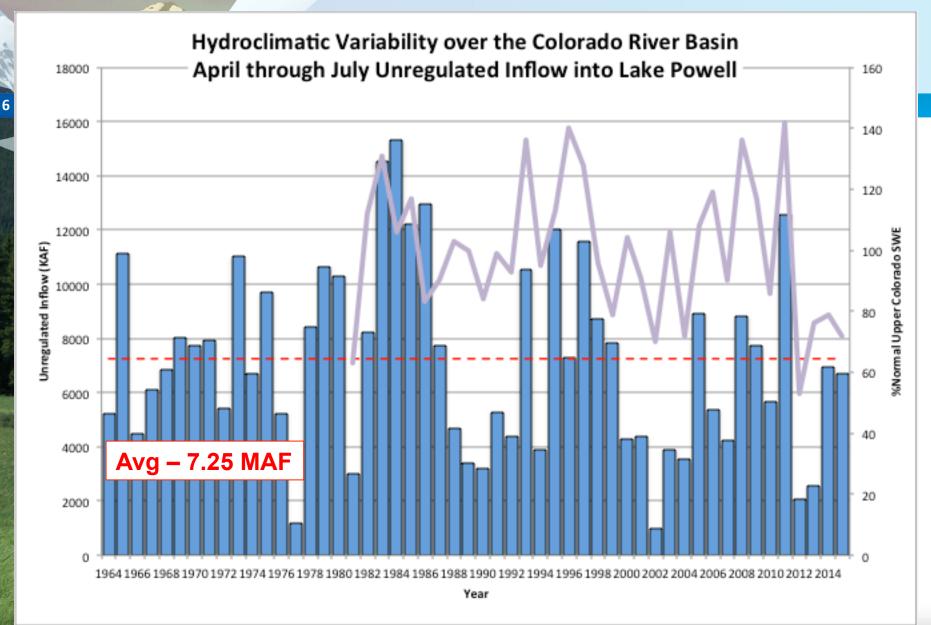
- Work with a broad and diverse set of stakeholders
 - Weather Forecast Offices and Reclamation
 - Municipal and Agricultural Water Users
 - USGS, NRCS, and many other federal agencies
 - State agencies, Academics, NGOs, Tribes
- Receive data from many of these sources

Colorado Basin River Forecast Center

River Forecast Centers (RFCs)

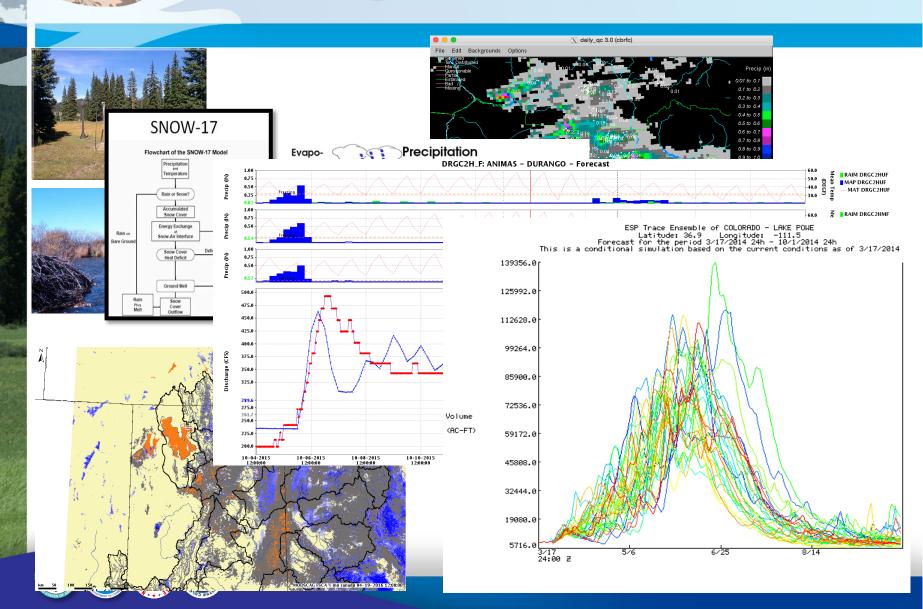
- -Support for WFOs
- -River levels and flows
- -Reservoir inflows
- -Each RFC is unique

CBRFC


- Most advanced, involved
- Reclamation is a key stakeholder
- www.cbrfc.noaa.gov

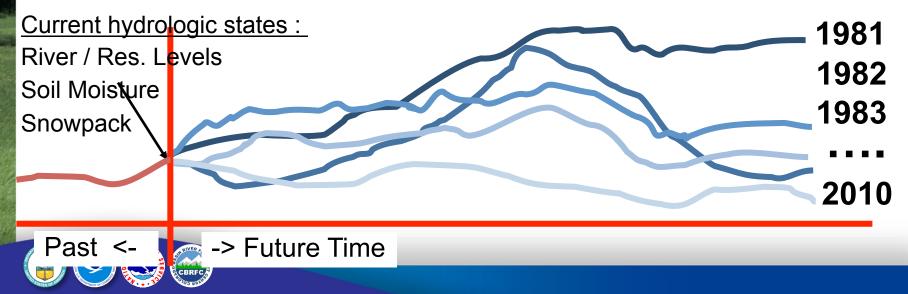
Weather Forecast Offices (WFOs)

- Everyday weather
- Extreme weather
- Warnings, watches, and advisories
- Floods, tornadoes, heat, etc...



Products and Services

- Water Supply Forecast
 - Utilize an ensemble of past climate to generate possible streamflow futures (1981 – 2010)
 - Dependent on precipitation information during the runoff season – we pay close attention to snowpack
 - Model soil moisture component is very important
- The more information we have the better!



Generating Ensemble Forecasts

ESP Probabilistic Forecasts

- Start with current conditions (from the daily model run)
- Apply precipitation and temperature from each historical year (1981-2010)
- A forecast is generated for each of the years (1981-2010) as if, going forward, that year will happen
- This creates 30 possible future streamflow patterns. Each year is given a 1/30 chance of occurring

We know The Climate Is Changing

10

Temperatures are rising and will continue to rise

Precipitation outlook is uncertain, but we do expect more extreme events

Decreased water supply, particularly for the Southwest and Colorado River Basin

High-emissions scenario

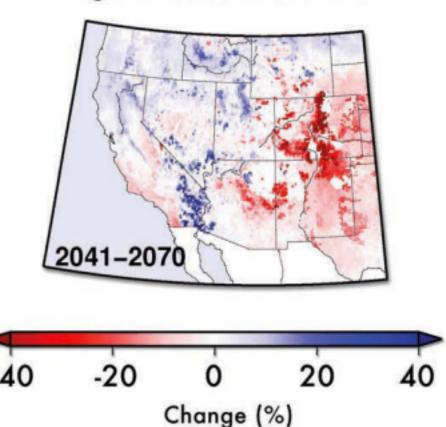


Figure from: Garfin, G., A. Jardine, R. Merideth, M. Black, and S. LeRoy, eds. 2013. Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment. A report by the Southwest Climate Alliance. Washington, DC: Island Press.

And Our Stakeholder's Needs Are Changing

- Where we were:
 - What is THE forecast?
 - How much water is there?
 - How much snow is there?
 - Will there be flooding?

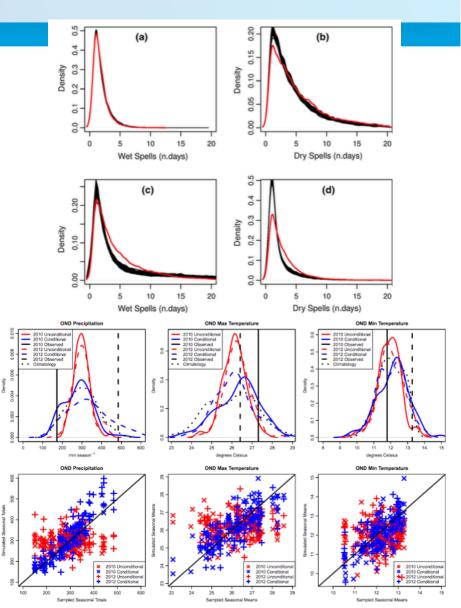
- Where we are going:
 - What is the range of forecasts?
 - What is the likelihood of reaching this flow?
 - What if it's a dry/wet year?
 - What is the risk to filling my reservoir?
 - What is your uncertainty?

Challenges Ahead

- Climate Change and its Impacts
 - Stationarity is in the past but it's also how we look forward
 - Extreme Events persistent drought and intense rains can impact our forecasts, and our stakeholder's ability to manage resources effectively
 - Is there a way to leverage climate information into our water supply forecasts?

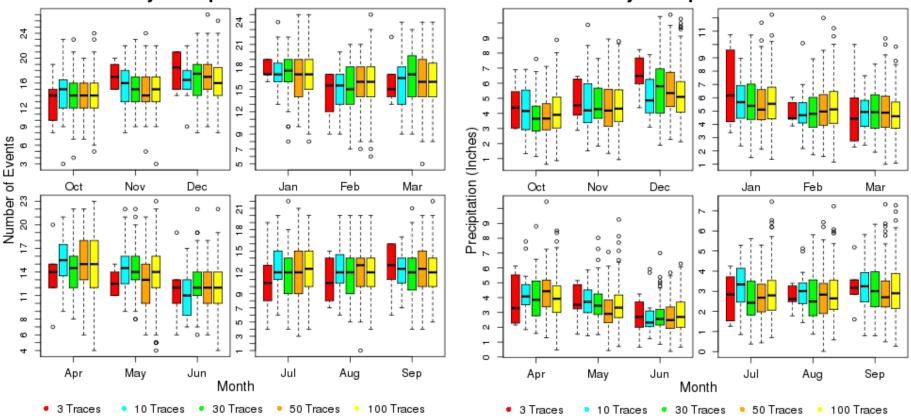
Moving Forward

- Investigating the use of a Stochastic Weather Generator
 - Reduce reliance on historical weather and climate
 - Understand variability and risk better
 - Incorporate climate information


Stochastic Weather Generator

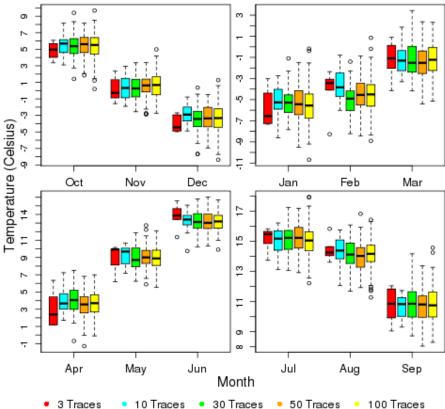
- Developed at the University of Colorado
- Nonparametric
 - Utilizes a k-NN approach
 - Daily weather is simulated using a generalized linear model
- Spatially consistent (based on historical data)
- Incorporate climate information

Stochastic Weather Generator


- See Verdin et al., 2015 in Stochastic Environmental Research and Risk Assessment
- And Verdin et al., 2015 in Journal of Hydrology

- Unconditioned Results
 - No climate information as of yet
 - Partially answers: "Are 30 traces enough to capture hydroclimatic variability?"
- Gunnison River Basin East River at Almont
- Capturing much of the precipitation and temperature variability at 30 traces

Monthly Precipitation Occurrence



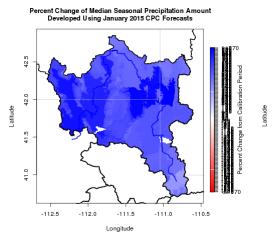
Monthly Precipitation Amount

17

18

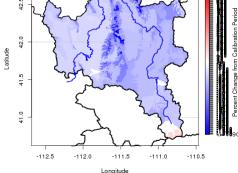
Average Maximum Temperatures

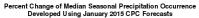
Average Minimum Temperatures



19

- Conditional Results
 - Based on CPC probabilities in the Upper Bear River Basin
 - Currently, there is a slight coding error causing some unreasonable results
 - Ability to develop spatial results is encouraging

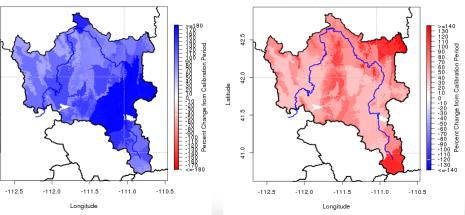

- Results are currently unreasonable, but show the ability to generate spatially consistent ensembles over a broad area
- Error can be fixed!



Percent Change of Median Seasonal Minimum Temperature

Developed Using January 2015 CPC Forecasts

42.5


42.0

41.5

41.0

Latitude

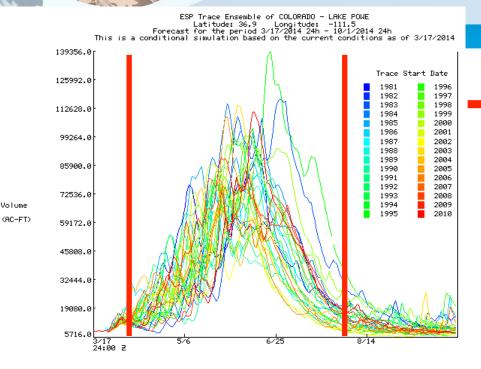
Percent Change of Median Seasonal Maximum Temperature Developed Using January 2015 CPC Forecasts

Next Steps

- Fix coding error
- Utilize CPC values more robustly to weight SWG
- Use derived weather scenarios to generate hydrologic scenarios
- Verify with historical runs

Questions?

paul.miller@noaa.gov


801-524-5130 x335

Extra Slides

ESP Probabilistic Forecasts

- The flows are summed into volumes for the period of interest (typically April 1 – July 31)
- 2. The statistics are simplified
- 3. 50% exceedance value approximates the most probable forecast

# Cond.					
#Trace		Data Exc	ceed.		
		Point P			
#					
1981	0.033 10)583427.0	0.290		
1982	0.033 83	872498.00	0.806	2	
1983	0.033 12	2646544.0	0.065	4	
1984	0.033 11	904022.0	0.129		
1985	0.033 11	402967.0	0.161		
1986	0.033 10	406237.0	0.355	# Exceeda	ance Conditional
1987	0.033 83	869501.00	0.839		lities Simulation
1988	0.033 87	719326.00	0.742	#	
1989	0.033 76	605042.50	0.935	0.900	8237243.000
1990	0.033 97	761623.00	0.452	0.800	8420311.000
1991	0.033 96	690117.00	0.484	0.700	8893428.000
1992	0.033 92	298360.00	0.613	0.600	9303964.000
1993	0.033 10	987106.0	0.2263	0.500	9564614.00
1994	0.033 93	395003.00	0.548	0.400	10175353.000
1995	0.033 14	388755.0	0.032	0.300	10533006.000
1996	0.033 86	611564.00	0.774	0.200	11253565.000
1997	0.033 10)736442.0	0.258	0.100	12458982.000
1998		0159611.0	0.419		
1999		2520652.0	0.097		
2000	0.033 82	252478.50	0.871		
2001	0.033 93	312369.00	0.581		
2002		39105.00			
2003		39112.00			
2004	0.033 88	867351.00	0.710		
2005	0.033 10)415361.0	0.323		
2006		235550.00	0.903		
2007		64843.00	0.645		
2008		954274.00	0.677		
2009		320183.0	0.194		
2010	0.033 10	0185848.0	0.387		