NOAA's Colorado Basin River Forecast Center

CBRFC Hydrologic Model Overview

Brenda Alcorn Senior Hydrologist

2016 Stakeholder Open House

CBRFC Model Description

- Continuous
 - meant to be run all the time, not just during events.
- Conceptual
 - physically based, but uses parameters in place of hard-toget data.
- Lumped
 - uses mean areal inputs; not distributed.
- Main components:
 - Sac-SMA soil moisture accounting model for generating runoff
 - SNOW-17 temperature index model for snow accumulation and ablation
- Calibrated using 1981 2010 data

- Segments are calibrated to the Unregulated Flow.
 - Measured diversions, imports, exports, and reservoir regulation are accounted for to approximate natural flow.
 - Observations are available in real-time
 - Unmeasured depletions and return flows are not accounted for and why this is not the same as 'Natural Flow'.
 - Usually known, unmeasured irrigation.
 - Derived by CBRFC during calibration using a model that is a function of irrigated acres and temperature.

$Q_u = Q_o + D + E - I + \Delta S$

- Q_u = unregulated flow
- Q_o = observed/measured flow
- D = measured diversion
- E = measured transbasin/transmountain export
- I = measured import
- ΔS = change in reservoir storage

Blue River Basin

Each segment is broken into 2-3 subareas by elevation.

- These subareas should have similar soil, land cover, and snow accumulation/melt characteristics.
- Because it is a lumped model each of these subareas is represented by a single (mean areal) point for precipitation and temperature.

NWS River Forecast Model

Composed of three major interrelated components.

Calibration System (CS)

determine model parameters
store historical data

Daily Operational Forecasts (DOF)

generate short term deterministic river forecasts
maintain model states

Ensemble Streamflow Prediction (ESP)

generate ensemble of hydrographs
 generate probabilistic forecasts

Calibration System (CS)

- Store historical precipitation, temperature and flow time series for the basin
- Choose from a variety of sub-models and processes
 - Snow model
 - Soil moisture model
 - Unit Hydrograph
 - Channel routing
 - Reservoir operations
- Determine the optimal set of parameters for each model, for each sub-area to best simulate *unregulated* flow

Calibration – Basics

- Evaporation is determined through water balance and is regionalized.
 - Based on PRISM data sets.
- Forced by 30 years (1981-2010) of 6 hourly precipitation and temperature.
 - Mean Areal Precipitation (MAP) for each subarea is calculated using pre-determined station weights.
 - Use precipitation stations that (hopefully) have similar characteristics to that area.
 - Weights are chosen to guarantee water balance in each area.
 - Mean Areal Temperature (MAT) for each subarea represents the midpoint elevation.
 - Nearby stations (climatologies known) are used to calculate the temperature of the MAT (climatology calculated using climatologies of the nearby stations).
 - Operationally MAP and MAT are calculated in a similar way to ensure our forecasts will have similar quality/characteristics to 30 years of calibration.

Calibration – Basics

Snow and Soil Models

Calibration – Parameters

- Determine calibration parameters for each subarea
 - SNOW-17
 - 5 Major
 - Snow Correction Factor, Max and Min Melt Factors, Wind Function, Snow Cover Index, Areal Depletion Curve
 - 5 Minor
 - Temperature indexes and minor melt parameters

- SAC-SMA

- 11 Major
 - Tank sizes (5) and rates of drainage (interflow, percolation)
- 5 Minor
 - Impervious area, Riparian Vegetation effects

Calibration – Results

Daily Operational Forecast(DOF)

- Quality Controlled Inputs
 - Observed precipitation, temperature, and streamflow
 - Forecast precipitation (5 days) and temperature (10 days)
- Model adjusted by forecasters in real time
- Keeps track of model states, including soil moisture and snowpack
- Can be run multiple times per day so there is continual quality control, updating and adjusting
- Outputs 10 day *regulated* deterministic streamflow forecast

DRGC2H_F: ANIMAS - DURANGO - Forecast

Inputs are QC'd before every run to make sure we have the best forcings possible. - Upper Colorado and Great Basin: 6 hr timestep

- Lower Colorado and Sevier Basin: 1 hr timestep

Start run 10 days back so we can see how model simulation compares to observed flows (how it is performing).

60.0 50.0 40.0 30.0 - 20.0	Mean Temp (DEGP)	AIM DRGC2HUF MAP DRGC2HUF MAT DRGC2HUF
60.0 50.0 40.0 30.0	Mean Temp (DEGF)	RAIM DRGC2HMF MAP DRGC2HMF MAT DRGC2HMF
70.0 60.0 50.0 40.0 30.0	Mean Temp (DEGP)	AIM DRGC2HLF MAP DRGC2HLF MAT DRGC2HLF
2.80		Simulation Adjusted Sim Previous Ecst
- 2.73		• QIN DRGC2XG
- 2.69		
- 2.65		
- 2.61	Fe	
- 2.57	νēi (F	
- 2.53	Э	
- 2.48		
- 2.43		
- 2.38		
- 2.32		
- 2.26		

Modifications must be reasonable and make sense – don't want to do whatever is necessary to make it match exactly. This gives us a better chance of simulating the next event correctly.

1

Operations Initial Conditions – Soil Moisture

LZFPC (baseflow or free water)

- 1. Carryover from previous season
- 2. Affected some by fall precipitation
- 3. Adjusted by flow observations in fall/early winter

LZTWC (tension water)

- 1. Little carryover from previous season
- 2. Affected strongly by fall precipitation
- 3. Regionally adjusted

SWE Accumulation Period

SWE Melt Period

- Regulated (trying to match observed flow in river)
 - Future diversions:
 - Set to current
 - Specified
 - Best guess
 - Future reservoir releases:
 - Set to current
 - Specified (input a schedule)
 - Spill

Ensemble Streamflow Prediction (ESP)

- Uses model states from DOF as starting point and can also use forecast precipitation (5 days) and temperature (10 days) inputs
- Uses historical precipitation and temperature time series from CS and statistical distributions to derive probabilistic flow forecasts
- Can adjust output for model bias

23

- Start with current conditions (from the daily model run)
- Apply precipitation and temperature from each historical year (1981-2010)
- A forecast is generated for each of the years (1981-2010) *as if, going forward,* that year will happen
- This creates 30 possible future streamflow patterns. Each year is given a 1/30 chance of occurring

- The flows are summed into volumes for the period of interest (typically April 1 – July 31)
- 2. The statistics are simplified
- 3. 50% exceedance value approximates the most probable forecast

#	Cond.		-		
#Trace	Year	Data Exc	eed.		
# year	Weight	Point P	rob.		
#					
1981	0.033 10	583427.0	0.290		
1982	0.033 83	72498.00	0.806	2	
1983	0.033 12	646544.0	0.065	_	
1984	0.033 11	904022.0	0.129		
1985	0.033 11	402967.0	0.161		
1986	0.033 10	406237.0	0.355	# Exceedar	nce Conditional
1987	0.033 83	69501.00	0.839	# Probabili	ties Simulation
1988	0.033 87	19326.00	0.742	#	
1989	0.033 76	05042.50	0.935	0.900	8237243.000
1990	0.033 97	61623.00	0.452	0.800	8420311.000
1991	0.033 96	90117.00	0.484	0.700	8893428.000
1992	0.033 92	98360.00	0.613	0.600	9303964.000
1993	0.033 10	987106.0	0.2263	0.500	9564614.000
1994	0.033 93	95003.00	0.548	0.400	10175353.000
1995	0.033 14	388755.0	0.032	0.300	10533006.000
1996	0.033 86	11564.00	0.774	0.200	11253565.000
1997	0.033 10	736442.0	0.258	0.100	12458982.000
1998	0.033 10	159611.0	0.419		
1999	0.033 12	520652.0	0.097		
2000	0.033 82	52478.50	0.871		
2001	0.033 93	12369.00	0.581		
2002	0.033 64	39105.00	0.968		
2003	0.033 94	39112.00	0.516		
2004	0.033 88	67351.00	0.710		
2005	0.033 10	415361.0	0.323		
2006	0.033 82	35550.00	0.903		
2007	0.033 89	64843.00	0.645		
2008	0.033 89	54274.00	0.677		
2009	0.033 11	320183.0	0.194		
2010	0.033 10	185848.0	0.387		

Unregulated Mode

- Reservoirs ignored
 - Water is just passed through them.
- Measured diversions set to zero
 - No water diverted into or out of the basin.
- Unmeasured depletions still removed
- Used for Water Supply volume forecasts
 - Some exceptions in Sevier and Great Basin

Regulated Mode

- Reservoirs use rules defined in model
 - Releases set based on time of year or simulated elevation of reservoir.
 - Spill, pass flow.
 - Can input a single release schedule if known that far into future.
- Diversions use historical data
 - Trace that uses 1995 MAP/MAT also uses 1995 diversions.
- Unmeasured depletions still removed
- Used mostly for mean daily Peak Flow forecasts

This

630.0

condi

Volume

(BC-ET)

ESP Trace Ensemble of RID BLANCO - PRODA Forecast estimates 37.50 - Long Udger - 165.5 Forecast estimates a conditional simulation based on the correct conditions as of 2/13/2014 708.9

Diversion

Volume

(AC-FT)

ESP Trace Ensemble of RIO BLANCO - PAGOSA Latitude: 37.2 Longitude: -106.8 Forecast for the period 4/1/2014 24h - 8/1/2014 24h ditional simulation based on the current conditions a

as of 2/13/2014

DOF vs. ESP

Daily Deterministic Forecasts

Regulated

INITIAL CONDITIONS ARE VERY IMPORTANT

- Soil moisture
- SWE
- Reservoir elevations/releases
- Diversions

Forcings are deterministic

- Five days of forecast precipitation (QPF)
 - Zero beyond this
- 10 days of forecast temperature (QTF)
 - Climatological average beyond this

Creates and saves model states that become starting point for ESP

ESP Probabilistic Forecasts

- Unregulated or Regulated
- INITIAL CONDITIONS ARE VERY
 IMPORTANT
 - Soil moisture, SWE
 - Current reservoir information not used in unregulated mode.
 - Diversion data used in regulated mode only is from historical years.
- Forcings are probabilistic
 - Uses 30 years of MAP and MAT from calibration to create 30 hydrologic traces/ scenarios.
 - QPF and QTF
 - Deterministic QPF (5 days) and QTF (10 days)
 - Can use ensemble QPF and QTF from weather and/or climate models (test mode)