NOAA's Colorado Basin River Forecast Center

Quality Control

Craig Peterson Senior Hydrometeorologist

2016 Stakeholder Open House

Quality Control of Data

- Why do we quality control data?
 - To attempt to duplicate in realtime what we have accomplished in the calibrations.

Quality Control of Data

- Daily/Hourly
 - daily_qc (MM): quality control point precipitation and temperature data at a daily timestep
 - multi-sensor (MPE): quality control radar and point precipitation data at an hourly timestep
- Weekly
 - model snow update (seus_lite): quality control precipitation on a scale between daily and monthly
- Monthly
 - monthly_qc (MM): quality control precipitation and temperature point data on a monthly (and seasonal) time step
 - check for under-reporting gages (mainly) in southern basin by summing daily values to monthly
- Years
 - double mass analysis (IDMA): check for sensor consistency over the calibration period (30-35 years)

Daily Quality Control

- Uses the following techniques to find bad gage data:
 - Nearest neighbor
 - Tipping bucket gages above freezing level
 - Plot time series of data
 - Allow substitution of snow pillow for precipitation gage for SNOTELs
 - Display of gridded field to help determine low/high catch gages
 - Compare with raw radar precipitation

Hourly Quality Control

- Uses radar data that is bias adjusted
 - Compares gage values to radar values
 - Radar data is trimmed to only use the part that is below the freezing level. In the winter, the MPE usually becomes a gage only field.
- Gage data is from quality controlled daily_qc
- Compare summed 24 hourly fields with 24 hour daily_qc grid

Quality Control between a day and a month

- Daily values of SNOTEL precipitation are often inaccurate
 - Calculates the precipitation values over a longer period (days to a month)
 - Updates the model SWE above 8000 feet in each basin.
 This is possible because
 - Precipitation is calculated through fixed weights of gages for each basin and area
 - During November 1 through April 1 (typically) most areas have frozen precipitation only (no rain)
- This technique greatly improves model performance in basins dominated by snowmelt and ensures that the model will perform operationally the same as it does in the calibration period

Monthly Quality Control

- Displays/calculates monthly/seasonal temperature and precipitation
 - Calculates amounts and percent of average
 - Helps to identify gages that are not functioning correctly
 - Gages that are outliers will be estimated. The snow states will be updated with these estimates
 - In the southern basins, helps to identify gages that are under/over reporting. These can be difficult to find in daily_qc

9

A.L

Yearly Quality Control

- Double Mass Analysis
- Compares gages to a single or group of gages that should have similar characteristics
- The mass (precipitation or max/min temperature) is added over a period of several years (30-35)
- The plot of the mass should be linear compared with the reference gage(s) if the gage characteristic has not changed
- What can change the gage characteristics?
 - Re-positioning (horizontal and vertical)
 - Change in reporting method (Gage construction)
 - Vegetation
- If needed, a correction can be made to ensure the gage has similar characteristics over time

