

Stage-Discharge Rating Development and Discharge Measurements

MIKE FREEMAN AND RYAN ROWLAND U.S.GEOLOGICAL SURVEY UTAH WATER SCIENCE CENTER

Outline

- Streamgages
- Measurement of stage
- Discharge Measurements
- Stage-Discharge Ratings
- Rating Validation
- Stage-Discharge Rating Shifts

Uinta River near Neola, UT

USGS Current Water Data for the Nation

--- Predefined displays ---Introduction

O Not ranked

Daily Streamflow Conditions

Hednesday, March 25, 2020 11:30ET

go

https://waterdata.usgs.gov/nwis/rt

Streamgages

- Stage also known as gage height
 - Arbitrary datum of water surface elevation at a gaging station
- Reference stage sensors (non-recording)
 - Staff gage
 - Wire-weight
- Electronic stage sensors (recording)
 - Non-submersible pressure transducers
 - Float tapes
 - Non-contact radars
- Measures stage not discharge!
- Stage transmitted using telemetry
 - GOES
 - Iridium Satellites
 - Cellular

Snake River near Moran, WY

Examples of Electronic Stage Sensors

Shaft encoder

Shaft encoder

Non-submersible Pressure Transducer

Non-contact Radar

Examples of non-recording stage sensors

Staff gage

Wire Weight

Tape down from Reference Point

Wire Weight

Cantilever Wire Weight

Electric Tape gage

Streamgages provide a time series of instantaneous stage/gage height

Field observations and maintenance ensure the gage height time series is accurate

- Gage height time series is edited to remove errors
 - Erroneous spikes
 - Gage height corrections (discrepancies between reference and recorder sensors)

From the corrected time series of gage heights a time series of discharge can be determined using a stage-discharge rating model

- Stage is the surrogate parameter used to predict discharge
 - "The height of the water is directly related to the amount of water flowing"
- The fundamental assumption for applying the stage-discharge method for computing streamflow is that <u>for every gage height value</u> <u>there is a unique discharge value</u>

Development of Rating Curve—the basics

- Discharge measurements are made over the range of flow/gage heights experienced at a site
- A gage height is assigned to the measured discharge

Types of Discharge Measurements

Direct measurements

- Volumetric measurements
- Portable flumes / weirs
- Mid-section method
- Moving boat ADCP
- Large Scale Particle Image Velocimetry (LSPIV)
- Tracer Dilution

Indirect measurements

Discharge Measurement Accuracy

- Discharge Uncertainty
 - QRev
 - Statistical analysis
 - Velocity distribution
 - Depths

Gage Height Uncertainty

- Accuracy of gage height readings assigned to discharge measurement is considered when qualifying measurement.
- Can have greater uncertainty at higher flows
 - Wave action
 - Drawdown

Measurement Uncertainty

- Qualitative Rating
 - Excellent: +/- 2%
 - Good: +/-5% •
 - Fair: +/-8% •
 - Poor: +/-10% ٠
- Example:
 - Discharge: 20,200 cfs •
 - Measurement Rated: Good
 - Max: 21,210 cfs ٠
 - Min: 19,190 cfs

USGS 09261000 GREEN RIVER NEAR JENSEN, UT

Available data for this site Surface-water: Field measurement O

S	•	G
		_

Jintah County, Utah
Hydrologic Unit Code 14060001
atitude 40°24'34", Longitude 109°14'05" NAD27
Drainage area 29,660.00 square miles
Contributing drainage area 25,400.0 square miles
Gage datum 4,758.00 feet above NGVD29

Output formats							
HTML table with channel data							
HTML table without channel data							
Tab-separated data with channel data							
Tab-separated data without channel data							
Graph of data							
Reselect output format							

Meas			Time	Measurement		Measuring	Stream flow ≎	Gage Height û	GH Change ≎	Meas.	Meas	
Number *	Date	Time \$	Datum ^{\$}	Used?	Who ^{\$}	Agency \$	(ft ³ /s) (ft)	(ft)	(hr)	Rated *	Control \$	
1040	2020-03-0	4 13:54:10	MST	Yes	ELR	USGS	2330	2.99	0.01	0.20	Good	Clear
1039	2020-03-0	4 13:16:51	MST	Yes	ELR	USGS	2290	2.94	0.01	0.20	Good	Clear
1038	2020-01-2	3 11:04:32	MST	Yes	ELR	USGS	2410	2.96	0.01	0.30	Fair	Clear
1037	2019-12-1	7 14:48:54	MST	Yes	ELR/BTR	USGS	2530	3.09	0.06		Good	Clear
1036	2019-11-1	4 14:28:01	MST	Yes	ELR/BTR	USGS	1640	2.46	0.00	0.50	Good	Clear
1035	2019-10-0	7 13:38:17	MDT	Yes	ELR/BTR	USGS	1830	2.54	-0.02		Fair	Clear
1034	2019-08-2	9 09:03:05	MDT	Yes	ELR/BTR	USGS	2110	2.86	0.00	0.30	Fair	Clear
1033	2019-07-2	3 12:43:33	MDT	Yes	ELR/NML	USGS	3170	3.53	0.00	0.20	Fair	Clear
1032	2019-06-1	0 13:17:17	MDT	Yes	ELR/MLF	USGS	20200	9.60	0.01	0.40	Good	Clear

≊USGS

≊USGS

Good example! Discharge measurement (2880 cfs; Good) is 1.3% less than reported discharge (2920 cfs)

Not ok! Discharge measurement (31 cfs; Fair) is 210% greater than reported discharge (10 cfs)

USGS Stage-Discharge Rating Curve Method

- Empirically based and rooted in open-channel hydraulics
 - not statistically developed
- Developed manually "curve" fitting
 - Equations are not used to fit the data
- Measurements are filtered in the development of the base rating curve
 - Range of flow
 - Historic measurements in similar channel conditions

Development of Rating Curve

Development of Rating Curve

- "Curve fitting"
- Balance error bars of discharge measurements
- Cover range in stage
- Historic peak measurements

Validation of Stage-Discharge Curve

- Continue to make measurements to validate stage-discharge model
- Channels are dynamic!!
- Temporary changes in the stage-discharge relation are handled via rating shifts
- Permanent changes in the stage-discharge relation lead to development of a new base rating curve

Unstable Channels

Unstable Channels

Dirty Devil River

Temporary Shifts to Stage-Discharge Rating Curve

Debris/Beaver Dams

Scour/Fill from events

Seasonal Algae

What is a Shift Curve?

- A shift curve is used to make an adjustment to the existing rating curve
- Adjustment is based upon an identified change to the hydraulic control
 - Identified by a verified discharge measurement that plots off of defined rating curve. (Exceeds measurement uncertainty)
- Discharge measurements are treated as the "truth" and we temporarily adjust our "model" (i.e. rating curve) to ensure accurate discharge is reported.

Variable Shift Diagram (a.k.a. V-Diagram)

 Shifts curves are developed using the rating curve plot and what is known as a variable shift diagram

Shift curve plotted variable shift diagram

Rating represented by the "0" shift amount

When is a Shift Curve Needed?

Trend of measurements indicates a slight change in the stage-discharge relation

- Shift could be justified or new rating
- Over/under estimating discharge

Indicates that no adjustment to base rating is needed.

• No shift applied

Questions?

Green River near Jensen, UT