The Airborne Snow Observatory

current state-of-the-art for instantaneous SWE mapping in the mountains
Overview

- State of observations of the snow pack in the Western US
- Use of observations in operational forecasts
- The Airborne Snow Observatory for SWE mapping
- Improvement in operational forecasts
Voids in our observations

- Snowmelt dominates runoff signal across much of the Western US
- Sparse in-situ networks (few per watershed)
- Poor representation of high and low elevation conditions
- Point measurements of SWE, spatial measurement of snow cover
- Clouds obscure satellite view
- Need models/relationships to use these obs. for runoff forecasting
These observations drive our Operational forecasts

Statistical streamflow forecast
• Regression relates spring SWE to spring/summer flows

Temperature index runoff forecast
• Calibrated air temperature/snowmelt relationship

Snow water resources & forecasts
affected by:
 Warming temperatures
 Snow season duration
 Rain/snow fraction
 Mid-winter melt
 Rain-on-snow
 Forest change
 Dust on snow

Operational forecasts are therefore vulnerable to unusual conditions...
...and conditions are changing
Operational forecasts

- Subject to non-negligible error when conditions that impact the snow pack deviate from "average"
- To improve forecasts at the watershed scale, we need to improve our SWE monitoring at the watershed scale
- Along with our use of observations in runoff models

<table>
<thead>
<tr>
<th>Year</th>
<th>April Forecast</th>
<th>Obs Inflow</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>120</td>
<td>197</td>
<td>-39%</td>
</tr>
<tr>
<td>2000</td>
<td>155</td>
<td>159</td>
<td>-2%</td>
</tr>
<tr>
<td>2001</td>
<td>150</td>
<td>146</td>
<td>3%</td>
</tr>
<tr>
<td>2002</td>
<td>59</td>
<td>57</td>
<td>4%</td>
</tr>
<tr>
<td>2003</td>
<td>170</td>
<td>173</td>
<td>-2%</td>
</tr>
<tr>
<td>2004</td>
<td>100</td>
<td>78</td>
<td>28%</td>
</tr>
<tr>
<td>2005</td>
<td>125</td>
<td>120</td>
<td>4%</td>
</tr>
<tr>
<td>2006</td>
<td>210</td>
<td>176</td>
<td>19%</td>
</tr>
<tr>
<td>2007</td>
<td>150</td>
<td>177</td>
<td>-15%</td>
</tr>
<tr>
<td>2008</td>
<td>200</td>
<td>195</td>
<td>2%</td>
</tr>
<tr>
<td>2009</td>
<td>180</td>
<td>192</td>
<td>-6%</td>
</tr>
<tr>
<td>2010</td>
<td>120</td>
<td>142</td>
<td>-15%</td>
</tr>
<tr>
<td>2011</td>
<td>225</td>
<td>272</td>
<td>-17%</td>
</tr>
<tr>
<td>2012</td>
<td>100</td>
<td>64</td>
<td>56%</td>
</tr>
<tr>
<td>2013</td>
<td>100</td>
<td>134</td>
<td>-25%</td>
</tr>
<tr>
<td>2014</td>
<td>250</td>
<td>242</td>
<td>3%</td>
</tr>
<tr>
<td>2015</td>
<td>166</td>
<td>202</td>
<td>-18%</td>
</tr>
<tr>
<td>2016</td>
<td>167</td>
<td>157</td>
<td>7%</td>
</tr>
<tr>
<td>2017</td>
<td>195</td>
<td>184</td>
<td>6%</td>
</tr>
<tr>
<td>2018</td>
<td>137</td>
<td>117</td>
<td>17%</td>
</tr>
</tbody>
</table>

1 April Apr-Jul runoff forecast errors
American River, CA 1990–2011

Data courtesy Nathan Elder, Denver Water
Pathfinder: The Airborne Snow Observatory

Riegl Q1560 dual laser scanning lidar
- 1064 nm
- Full-waveform
- 60° field of view

CASI-1500 Imaging Spectrometer
- 72 bands between 0.35 and 1.05 μm
- 40° field of view

GNSS/IMU – Applanix AP60
- RTX GNSS correction
- PPRTX Processing
• Spatially-distributed snow depth observations
• Snow depth maps at 3 m spatial resolution
• Snow depth observations are converted to SWE using snow density maps from a physically-based model
• SWE maps at 50 m spatial resolution
MODSCAG Fractional snow cover area (background)
Not just watershed SWE
Derived metrics:
• Distribution with elevation
• Distribution with time
• Distribution per sub basin
Building a legacy in the southern Sierra Nevada

Example: Tuolumne River Basin
utility to operations in a wide range of conditions
refined data processing for fast data turnaround
bridge to partnerships in neighboring basins
Improvement brings impact …
Spatial extent of activities
Outlook to the future

• ASO started at the NASA Jet Propulsion Laboratory in 2012, first as a demonstration mission and then starting in 2016, mostly funded by operational entities

• These operations will be transitioning out of JPL at the end of the year

• A private company will be taking over the ASO tech transfer, with lidar, spectrometer and modeling surveys for water management entities in both California and Colorado, starting in 2020

• Contact at California Cooperative Snow Survey Program
 Sean De Guzman Sean.DeGuzman@water.ca.gov
The Airborne Snow Observatory

kathryn.j.bormann@jpl.nasa.gov
What is the accuracy?

Snow depths in exposed areas are within 1-2 cm at the 50 m scale

Currier et al., 2019